快速幂取模

即快速求出(a^b)mod c 的值。由于当a、b的值非常大时直接求a^b可能造成溢出,并且效率低。

思路

原理就是基于\(a*b \% c = ((a \% c)*(b \% c))\% c\),\(a^b \% c = (a \% c)^b \% c\)公式。

求解快速幂:

设指数b用二进制表示为\(b = (b_n b_{n-1}...b_2b_1b_0)_2\),

\(b = b_0 + b_1*2^1 + b_2*2^2+...+b_{n-1}*2^{n-1} + b_n*2^n\),

\(a^b = a^{b_0 + b_1*2^1 + b_2*2^2+...+b_{n-1}*2^{n-1} + b_n*2^n} = a^{b0}*a^{b_1*2^1}*a^{b_2*2^2} *...*a^{b_{n-1}*2^{n-1}} * a^{b_n*2^n}\),

\(a^b \% c = a^{b0}*a^{b_1*2^1}*a^{b_2*2^2} *...*a^{b_{n-1}*2^{n-1}} * a^{b_n*2^n} \% c\),

设\(K_n = (a^{b_n*2^n})\%c\),求Kn的话,当bn=0时Kn=1,bn=1时\(Kn=(a^{2^n})\%c\),因此再考虑计算\((a^{2^n})\%c\)。

\((a^{2^n})\%c = [(a^{2^{n-1}}\%c)*(a^{2^{n-1}}\%c)]\%c\)由此递推。

代码

python

def quick_powmod(a, b, c):
a = a % c
ans = 1 # 存放结果
while b != 0:
if b & 1: # 二进制与
ans = (ans * a) % c
a = (a * a) % c # 取模是防止溢出
b >>= 1 # 二进制向右移动一位
return ans

例如a=2 b=10 c=3,b的二进制表示为1010。

\(2^{10} = 2^{0+ 1*2^1+0*2^2+1*2^3}\),b的二进制位从右往左取,为0时,累乘a,为1时,将累乘结果乘到ans里。

快速乘取模

使用二进制将乘法转换为加法。

思路

与快速幂取模类似,将一个乘数转换为二进制计算。

例如\(20*14 = 20*(1110)_2 = 20*2^0*0 + 20*2^1*1+20*2^2*1+20*2^3*1\)

代码

Python

def quick_mulmod(a, b, c):
ans = 0
a = a % c
while b != 0:
if b & 1 :
ans = (ans + a) % c
a = (2*a) % c
b >>= 1
return ans

乍一看还是很不好懂的,举个例子推导一遍就明白了。

快速幂取模&快速乘取模的更多相关文章

  1. 乘方快速幂 OR 乘法快速幂

    关于快速幂这个算法,已经不想多说,很早也就会了这个算法,但是原来一直靠着模板云里雾里的,最近重新学习,发现忽视了一个重要的问题,就是若取模的数大于int型,即若为__int64的时候应该怎么办,这样就 ...

  2. Educational Codeforces Round 13——D. Iterated Linear Function(矩阵快速幂或普通快速幂水题)

      D. Iterated Linear Function time limit per test 1 second memory limit per test 256 megabytes input ...

  3. 51nod 1113 矩阵快速幂( 矩阵快速幂经典模板 )

    1113 矩阵快速幂 链接:传送门 思路:经典矩阵快速幂,模板题,经典矩阵快速幂模板. /******************************************************* ...

  4. 【转】C语言快速幂取模算法小结

    (转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...

  5. 快速幂取模_C++

    一.题目背景 已知底数a,指数b,取模值mo 求ans = ab % mo 二.朴素算法(已知可跳过) ans = 1,循环从 i 到 b ,每次将 ans = ans * a % mo 时间复杂度O ...

  6. NYOJ-676小明的求助,快速幂求模,快速幂核心代码;

    小明的求助 时间限制:2000 ms  |  内存限制:65535 KB 难度:2 描述 小明对数学很有兴趣,今天老师出了道作业题,让他求整数N的后M位,他瞬间感觉老师在作弄他,因为这是so easy ...

  7. hdu4549 矩阵快速幂 + 欧拉降幂

    R - M斐波那契数列 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit  ...

  8. 矩阵快速幂——POJ3070

    矩阵快速幂和普通的快速幂差不多,只不过写起来比较麻烦一点,需要重载*运算符. 模板: struct mat { int m[maxn][maxn]; }unit; mat operator * (ma ...

  9. [学习笔记]快速幂&&快速乘

    本质:二进制拆分(你说倍增我也没脾气).然后是一个配凑. 合起来就是边二进制拆分,边配凑. 快速乘(其实龟速):把乘数二进制拆分.利用乘法分配率. 用途:防止爆long long 代码: ll qk( ...

  10. 快速幂C++实现

    快速幂模板题 很明显,这个题目不能用简单的\(for\)循环+\(mod\)来完成,因为指数\(p\)已经达到了长整型,直接循环来完成的话肯定会超时的. 那么快速幂就应运而生了. 什么是快速幂呢? 利 ...

随机推荐

  1. Python基础之第三方库gevent安装

    安装gevent库: 想要安装gevent库,我们需要确定pip版本: 使用 pip3 list: 我们可以发现pip版本为19.3.1,如果你们的pip版本不是最新版可以使用命令python -m ...

  2. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  3. 使用dva改造旧项目的数据流方案

     前言 最近在给自己的脚手架项目转到TypeScript时,遇到了一些麻烦. 项目之前采用的是react + react-redux + redux-thunk + redux-actions +re ...

  4. 强化学习二:Markov Processes

    一.前言 在第一章强化学习简介中,我们提到强化学习过程可以看做一系列的state.reward.action的组合.本章我们将要介绍马尔科夫决策过程(Markov Decision Processes ...

  5. BZOJ2440完全平方数(莫比乌斯反演)

    Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...

  6. 洛谷 题解 P2296 【寻找道路】

    Problem P2296 [寻找道路] solution 首先声明,这题我用了spfa,而: 关于spfa:它死了. 杀手: NOI 2018−T1 出题人 感谢出题人,没有卡spfa 用时: 20 ...

  7. Python3 并发编程4

    目录 Event事件 线程池与进程池 基本概念 使用方法 和信号量的区别 协程(coroutine) 基本概念 实现方式 多线程爬取梨视频 Event事件 用来控制线程的执行 e.isSet()查看对 ...

  8. Python3 并发编程1

    目录 操作系统发展 穿孔卡片 批处理 多道技术(单核) 并发与并行 进程 程序与进程 进程调度 进程的三个状态 同步和异步 阻塞与非阻塞 僵尸进程与孤儿进程 守护进程 Python中的进程操作 Pro ...

  9. Flume理论研究与实验

    一.理论研究 1.1 总览 Flume是一个分布式的可靠的日志收集系统,主要是用于从各种数据源收集.聚合并移动大批量的日志数据到存储系统:它本身具有许多故障转移和恢复机制,具有强大的容错能力:它使用下 ...

  10. windows10查看电脑已经保存的wifi密码

    1,打开windows的命令窗口,输入    netsh wlan show profiles,如下图,这个命令仅仅只是查看一下电脑保存的所有的wifi名字 2,需要查看密码的话,则需要输入这个命令, ...