机器学习--用PCA算法实现三维样本降到二维
对于维数比较多的数据,首先需要做的事就是在尽量保证数据本质的前提下将数据中的维数降低。降维是一种数据集预处理技术,往往在数据应用在其他算法之前使用,它可以去除掉数据的一些冗余信息和噪声,使数据变得更加简单高效,从而实现提升数据处理速度的目的,节省大量的时间和成本。降维也成为了应用非常广泛的数据预处理方法。目前处理降维的技术有很多种,如SVD奇异值分解,主成分分析(PCA),因子分析(FA),独立成分分析(ICA)等。
以下是使用主成分分析(PCA)进行降维:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.datasets.samples_generator import make_blobs
from sklearn.decomposition import PCA def show_scatter(data,nfigure,n_axe):
num=data.shape[1]
if num==2:
fig.add_subplot(nfigure,1,n_axe)
plt.scatter(data[:,0],data[:,1],marker='o')
elif num==3:
fig.add_subplot(nfigure,1,n_axe,projection='3d')
plt.scatter(data[:,0],data[:,1],data[:,2],marker='o') def pca_components(component,X):
if isinstance(component,str):
pca_n=PCA(n_components=component,svd_solver='full')
print(component)
else:
pca_n=PCA(n_components=component)
print(component)
newData_n=pca_n.fit_transform(X)
print('主成分方差比例:',pca_n.explained_variance_ratio_)
print('主成分方差:',pca_n.explained_variance_)
return newData_n X,y=make_blobs(n_samples=10000,n_features=3,centers=[[3,3,3],
[0,0,0],[1,1,1],[2,2,2]],cluster_std=[0.2,0.1,0.2,0.2],
random_state=9) n_components=[2,0.95,0.99,'mle'] fig=plt.figure(figsize=(8,12) ) show_scatter(X,len(n_components)+1,n_axe=1) for i,component in zip(range(len(n_components)),n_components):
newData=pca_components(component,X)
show_scatter(newData,len(n_components)+1,n_axe=i+2)
输出结果:
2
主成分方差比例: [ 0.98318212 0.00850037]
主成分方差: [ 3.78521638 0.03272613]
0.95
主成分方差比例: [ 0.98318212]
主成分方差: [ 3.78521638]
0.99
主成分方差比例: [ 0.98318212 0.00850037]
主成分方差: [ 3.78521638 0.03272613]
mle
主成分方差比例: [ 0.98318212]
主成分方差: [ 3.78521638]

机器学习--用PCA算法实现三维样本降到二维的更多相关文章
- 机器学习--主成分分析(PCA)算法的原理及优缺点
一.PCA算法的原理 PCA(principle component analysis),即主成分分析法,是一个非监督的机器学习算法,是一种用于探索高维数据结构的技术,主要用于对数据的降维,通过降维可 ...
- Matlab绘制三维曲面(以二维高斯函数为例)
原文地址为:Matlab绘制三维曲面(以二维高斯函数为例) 寒假学习了一下Python下的NumPy和pymatlab,感觉不是很容易上手.来学校之后,决定继续看完数字图像处理一书.还是想按照上学期的 ...
- Python 迭代器&生成器,装饰器,递归,算法基础:二分查找、二维数组转换,正则表达式,作业:计算器开发
本节大纲 迭代器&生成器 装饰器 基本装饰器 多参数装饰器 递归 算法基础:二分查找.二维数组转换 正则表达式 常用模块学习 作业:计算器开发 实现加减乘除及拓号优先级解析 用户输入 1 - ...
- 基于深度学习的病毒检测技术无需沙箱环境,直接将样本文件转换为二维图片,进而应用改造后的卷积神经网络 Inception V4 进行训练和检测
话题 3: 基于深度学习的二进制恶意样本检测 分享主题:全球正在经历一场由科技驱动的数字化转型,传统技术已经不能适应病毒数量飞速增长的发展态势.而基于沙箱的检测方案无法满足 APT 攻击的检测需求,也 ...
- 用三维的视角理解二维世界:完美解释meshgrid函数,三维曲面,等高线,看完你就懂了。...
完美解释meshgrid函数,三维曲面,等高线 #用三维的视角理解二维世界 #完美解释meshgrid函数,三维曲面,等高线 import numpy as np import matplotlib. ...
- 【opencv】 solvepnp 和 solvepnpRansac 求解 【空间三维坐标系 到 图像二维坐标系】的 三维旋转R 和 三维平移 T 【opencv2使用solvepnp求解rt不准的问题】
参考: pnp问题 与 solvepnp函数:https://www.jianshu.com/p/b97406d8833c 对图片进行二维仿射变换cv2.warpAffine() or 对图片进行二维 ...
- numpy中三维数组转变成二维数组
numpy中reshape()函数对三维数组进行转换成二维数组,见下面例子: >>>a=np.reshape(np.arange(18),(3,3,2)) >>> ...
- Python算法之动态规划(Dynamic Programming)解析:二维矩阵中的醉汉(魔改版leetcode出界的路径数)
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_168 现在很多互联网企业学聪明了,知道应聘者有目的性的刷Leetcode原题,用来应付算法题面试,所以开始对这些题进行" ...
- 算法模板——线段树6(二维线段树:区域加法+区域求和)(求助phile)
实现功能——对于一个N×M的方格,1:输入一个区域,将此区域全部值作加法:2:输入一个区域,求此区域全部值的和 其实和一维线段树同理,只是不知道为什么速度比想象的慢那么多,求解释...@acphile ...
随机推荐
- mybatis中 == 和 != 的用法
!= 的用法 <if test="xxx != null and xxx !=''"> == 的用法(相较于!=,仅需将双引号和单引号的位置换一下即可) <if ...
- 数据结构学习--单循环链表(python)
概念 将单链表的终端节点的指针由原来的空指针改为指向头节点, 就是整个单链表形成一个环, 这种首尾相接的单链表称为单循环链表. 实现 class Node: """ 节点 ...
- 连接查询 变量、if else、while
连接查询 变量.if else.while 一.连接查询:通过连接运算符可以实现多个表查询. 连接是关系数据库模型的主要特点,也是它区别于其它类型数据库管理系统的一个标志. 常用的两个链接运算符: ...
- 常用注解解析(因为不太明白@component和@configuration写了)
1.@controller 控制器(注入服务) 用于标注控制层,相当于struts中的action层 2.@service 服务(注入dao) 用于标注服务层,主要用来进行业务的逻辑处理 3.@rep ...
- 如何清除Mac上的空间,让Mac更有效地运行
清理Mac上的空间通常被认为是一件必须要做的事情.因为这样,Mac将在驱动器上具有更多可用空间,从而可以更好地运行,并且您(以及系统和各种应用程序)可以根据需要利用额外的空间. 您可能会问的一个问题是 ...
- String对象及正则表达式
1,String和string还是有区别的,一个就是用双引号或单引号包括起来的数据就是字符串,另一个本质是数组多个字符串组成的只读字符数组: 2,你说string他是数组吧,他和数组还是有点区别的,他 ...
- 【algo&ds】9.拓扑排序、AOV&AOE、关键路径问题
对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性 ...
- 利用Python进行数据分析-Pandas(第三部分)
访问数据是使用本书所介绍的这些工具的第一步.这里会着重介绍pandas的数据输入与输出,虽然别的库中也有不少以此为目的的工具. 输入输出通常可以划分为几个大类:读取文本文件和其他更高效的磁盘存储格式, ...
- 一文带你深入浅出Spring 事务原理
Spring事务的基本原理 Spring事务的本质其实就是数据库对事务的支持,没有数据库的事务支持,spring是无法提供事务功能的.对于纯JDBC操作数据库,想要用到事务,可以按照以下步骤进行: 获 ...
- 【数据结构】什么是二叉查找树(BST)
什么是二叉查找树(BST) 1. 什么是BST 对于二叉树中的每个节点X,它的左子树中所有项的值都小于X中的项,它的右子树中所有项的值大于X中的项.这样的二叉树是二叉查找树. 以上是一颗二叉查找树,其 ...