对于维数比较多的数据,首先需要做的事就是在尽量保证数据本质的前提下将数据中的维数降低。降维是一种数据集预处理技术,往往在数据应用在其他算法之前使用,它可以去除掉数据的一些冗余信息和噪声,使数据变得更加简单高效,从而实现提升数据处理速度的目的,节省大量的时间和成本。降维也成为了应用非常广泛的数据预处理方法。目前处理降维的技术有很多种,如SVD奇异值分解,主成分分析(PCA),因子分析(FA),独立成分分析(ICA)等。

  以下是使用主成分分析(PCA)进行降维:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.datasets.samples_generator import make_blobs
from sklearn.decomposition import PCA def show_scatter(data,nfigure,n_axe):
num=data.shape[1]
if num==2:
fig.add_subplot(nfigure,1,n_axe)
plt.scatter(data[:,0],data[:,1],marker='o')
elif num==3:
fig.add_subplot(nfigure,1,n_axe,projection='3d')
plt.scatter(data[:,0],data[:,1],data[:,2],marker='o') def pca_components(component,X):
if isinstance(component,str):
pca_n=PCA(n_components=component,svd_solver='full')
print(component)
else:
pca_n=PCA(n_components=component)
print(component)
newData_n=pca_n.fit_transform(X)
print('主成分方差比例:',pca_n.explained_variance_ratio_)
print('主成分方差:',pca_n.explained_variance_)
return newData_n X,y=make_blobs(n_samples=10000,n_features=3,centers=[[3,3,3],
[0,0,0],[1,1,1],[2,2,2]],cluster_std=[0.2,0.1,0.2,0.2],
random_state=9) n_components=[2,0.95,0.99,'mle'] fig=plt.figure(figsize=(8,12) ) show_scatter(X,len(n_components)+1,n_axe=1) for i,component in zip(range(len(n_components)),n_components):
newData=pca_components(component,X)
show_scatter(newData,len(n_components)+1,n_axe=i+2)

输出结果:

2
主成分方差比例: [ 0.98318212 0.00850037]
主成分方差: [ 3.78521638 0.03272613]
0.95
主成分方差比例: [ 0.98318212]
主成分方差: [ 3.78521638]
0.99
主成分方差比例: [ 0.98318212 0.00850037]
主成分方差: [ 3.78521638 0.03272613]
mle
主成分方差比例: [ 0.98318212]
主成分方差: [ 3.78521638]

机器学习--用PCA算法实现三维样本降到二维的更多相关文章

  1. 机器学习--主成分分析(PCA)算法的原理及优缺点

    一.PCA算法的原理 PCA(principle component analysis),即主成分分析法,是一个非监督的机器学习算法,是一种用于探索高维数据结构的技术,主要用于对数据的降维,通过降维可 ...

  2. Matlab绘制三维曲面(以二维高斯函数为例)

    原文地址为:Matlab绘制三维曲面(以二维高斯函数为例) 寒假学习了一下Python下的NumPy和pymatlab,感觉不是很容易上手.来学校之后,决定继续看完数字图像处理一书.还是想按照上学期的 ...

  3. Python 迭代器&生成器,装饰器,递归,算法基础:二分查找、二维数组转换,正则表达式,作业:计算器开发

    本节大纲 迭代器&生成器 装饰器  基本装饰器 多参数装饰器 递归 算法基础:二分查找.二维数组转换 正则表达式 常用模块学习 作业:计算器开发 实现加减乘除及拓号优先级解析 用户输入 1 - ...

  4. 基于深度学习的病毒检测技术无需沙箱环境,直接将样本文件转换为二维图片,进而应用改造后的卷积神经网络 Inception V4 进行训练和检测

    话题 3: 基于深度学习的二进制恶意样本检测 分享主题:全球正在经历一场由科技驱动的数字化转型,传统技术已经不能适应病毒数量飞速增长的发展态势.而基于沙箱的检测方案无法满足 APT 攻击的检测需求,也 ...

  5. 用三维的视角理解二维世界:完美解释meshgrid函数,三维曲面,等高线,看完你就懂了。...

    完美解释meshgrid函数,三维曲面,等高线 #用三维的视角理解二维世界 #完美解释meshgrid函数,三维曲面,等高线 import numpy as np import matplotlib. ...

  6. 【opencv】 solvepnp 和 solvepnpRansac 求解 【空间三维坐标系 到 图像二维坐标系】的 三维旋转R 和 三维平移 T 【opencv2使用solvepnp求解rt不准的问题】

    参考: pnp问题 与 solvepnp函数:https://www.jianshu.com/p/b97406d8833c 对图片进行二维仿射变换cv2.warpAffine() or 对图片进行二维 ...

  7. numpy中三维数组转变成二维数组

    numpy中reshape()函数对三维数组进行转换成二维数组,见下面例子: >>>a=np.reshape(np.arange(18),(3,3,2)) >>> ...

  8. Python算法之动态规划(Dynamic Programming)解析:二维矩阵中的醉汉(魔改版leetcode出界的路径数)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_168 现在很多互联网企业学聪明了,知道应聘者有目的性的刷Leetcode原题,用来应付算法题面试,所以开始对这些题进行" ...

  9. 算法模板——线段树6(二维线段树:区域加法+区域求和)(求助phile)

    实现功能——对于一个N×M的方格,1:输入一个区域,将此区域全部值作加法:2:输入一个区域,求此区域全部值的和 其实和一维线段树同理,只是不知道为什么速度比想象的慢那么多,求解释...@acphile ...

随机推荐

  1. 分布式全局唯一ID的实现

    分布式全局唯一ID的实现 前言 上周末考完试,这周正好把工作整理整理,然后也把之前的一些素材,整理一番,也当自己再学习一番. 一方面正好最近看到几篇这方面的文章,另一方面也是正好工作上有所涉及,所以决 ...

  2. pycharm安装第三方包问题解决

    pycharm安装第三方包问题解决 pycharm是一个基于python的非常好用的集成开发环境,而python有许多非常不错的开源第三方库,这就需要将一些这样的第三方库导入到我们的项目中去了.然而, ...

  3. C#构造方法(构造函数)

    构造方法特点: 一 ,与类同名 public class Product { public int ID { get; set; } public String NAME { get; set; } ...

  4. python中time.strftime不支持中文,报错UnicodeEncodeError: 'locale' codec can't encode character '\u5e74' in position 2: encoding error

    使用time.strftime将 "2020-10-10 10:10:10" 转化为  2020年10月10日10时10分10 报错: import time timestr=&q ...

  5. 大疆无人机 Android 开发总结——视频解码

    DJI_Mobile_SDK是大疆为开发者提供的开发无人机应用的开发接口,可以实现对无人机飞行的控制,也可以利用无人机相机完成一些视觉任务.目前网上的开发教程主要集中于DJI 开发者社区,网上的资源非 ...

  6. Android插件基础之类加载器学习

    记录学习java 加载器学习所获心得,逐步记录了解java加载器的过程.为了知悉android 插件化的实现原理,从而需要从头了解android加载apk,以及基础的java类加载的加载过程情况,为方 ...

  7. AWS SNS 创建 订阅 发布

    AWS SNS 创建 订阅 发布 20180810 chenxin 为实现短信报警,添加以下SNS的短信(SMS)订阅 选择主题,创建新主题,或修改原有主题 进入对应主题后,选择创建订阅,选择SMS, ...

  8. python内置函数的使用(一)

    迭代器(iterator)和可迭代对象(iterable) 在python中,要实现要个对象可以进行遍历,也就是实现for循环,那么他必须是一个可迭代对象,例如string,tuple,list,di ...

  9. 动态数组原理【Java实现】(六)

    前言 接下来我们进入集合学习,看过很多文章一上来就是讲解原理感觉会特别枯燥,任何成熟解决方案的出现都是为了解决问题,若通过实际问题引入然后再来讲解原理想必学起来必定事半功倍,从我写博客的那一天起,我就 ...

  10. requeests模块请求常用参数的写法整理

    主要是针对写法 一.requests.get requests.get是调用了requests.request('get', url, params=params, **kwargs) 1.url 协 ...