A frog has just learned some number theory, and can't wait to show his ability to his girlfriend.

Now the frog is sitting on a grid map of infinite rows and columns. Rows are numbered 1,2,⋯ from the bottom, so are the columns. At first the frog is sitting at grid (sx,sy), and begins his journey.

To show his girlfriend his talents in math, he uses a special way of jump. If currently the frog is at the grid (x,y), first of all, he will find the minimum z that can be divided by both x and y, and jump exactly z steps to the up, or to the right. So the next possible grid will be (x+z,y), or (x,y+z).

After a finite number of steps (perhaps zero), he finally finishes at grid (ex,ey). However, he is too tired and he forgets the position of his starting grid!

It will be too stupid to check each grid one by one, so please tell
the frog the number of possible starting grids that can reach (ex,ey)

!

InputFirst line contains an integer T, which indicates the number of test cases.

Every test case contains two integers ex and ey, which is the destination grid.

⋅ 1≤T≤1000.

⋅ 1≤ex,ey≤109.OutputFor every test case, you should output "
Case #x: y", where x indicates the case number and counts from 1 and y is the number of possible starting grids.

Sample Input

3
6 10
6 8
2 8

Sample Output

Case #1: 1
Case #2: 2
Case #3: 3

OJ-ID:
hdu-5584

author:
Caution_X

date of submission:
20191021

tags:
math

description modelling:
青蛙跳,每次移动从(x,y)->(x,y+lcm(x,y))或(x,y)->(x+lcm(x,y),y)

major steps to solve it:
设当前位置(at,bt),则下一步为(at(1+b),bt)或(at,bt(1+a))
那么反过来推,可以得到当前步(at,bt),则上一步为(at,bt/(a+1))或(at/(1+b),bt)
以此类推直到b无法被(1+a)整除或者a无法被(1+b)整除

AC code:

#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
int get_gcd(int x,int y)
{
if(!x)return y;
return get_gcd(y%x,x);
}
int main()
{
//freopen("input.txt","r",stdin);
int n,x,y;
scanf("%d",&n);
for(int i=; i<=n; ++i) {
int ans=;
scanf("%d%d",&x,&y);
int c=get_gcd(x,y);
x/=c,y/=c;
if(x>y)swap(x,y);
while(y%(x+)==) {
ans++;
y/=(x+);
if(x>y)swap(x,y);
}
printf("Case #%d: %d\n",i,++ans);
}
return ;
}

LCM Walk HDU - 5584的更多相关文章

  1. L - LCM Walk HDU - 5584 (数论)

    题目链接: L - LCM Walk HDU - 5584 题目大意:首先是T组测试样例,然后给你x和y,这个指的是终点.然后问你有多少个起点能走到这个x和y.每一次走的规则是(m1,m2)到(m1+ ...

  2. HDU 5584 LCM Walk 数学

    LCM Walk Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5584 ...

  3. HDU5584 LCM Walk 数论

    LCM Walk Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  4. hdu-5584 LCM Walk(数论)

    题目链接:LCM Walk Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others)To ...

  5. HDU 5584 LCM Walk(数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意:(x, y)经过一次操作可以变成(x+z, y)或(x, y+z)现在给你个点(ex, e ...

  6. HDU 5584 LCM Walk【搜索】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意: 分析: 这题比赛的时候卡了很久,一直在用数论的方法解决. 其实从终点往前推就可以发现, ...

  7. hdu 5584 LCM Walk(数学推导公式,规律)

    Problem Description A frog has just learned some number theory, and can't wait to show his ability t ...

  8. hdu 5584 LCM Walk

    没用运用好式子...想想其实很简单,首先应该分析,由于每次加一个LCM是大于等于其中任何一个数的,那么我LCM加在哪个数上面,那个数就是会变成大的,这样想,我们就知道,每个(x,y)对应就一种情况. ...

  9. HDU - 5584 LCM Walk (数论 GCD)

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

随机推荐

  1. Python中文件操作2——shutil模块

    1 文件操作 文件有很多的操作,之前的文件操作中介绍了内建函数对文件的打开.读取以及写入,这三种操作是对文件基本的使用.文件还有复制.删除.移动.改变文件的属主属组等操作.下面主要看os模块和shut ...

  2. 谈谈EF Core实现数据库迁移

    作为程序员,在日常开发中,记忆犹新的莫过于写代码,升级程序.升级程序包含两部分:一是,对服务程序更新:二是,对数据库结构更新.本篇博文主要介绍数据库结构更新,在对数据库升级时,不知道园友们是否有如下经 ...

  3. tinyriscv---一个从零开始写的极简、易懂的开源RISC-V处理器核

    本项目实现的是一个微riscv处理器核(tinyriscv),用verilog语言编写,只求以最简单.最通俗易懂的方式实现riscv指令的功能,因此没有特意去对代码做任何的优化,因此你会看到里面写的代 ...

  4. PDF怎么转换为CAD文件?这两种方法你的会

    在日常的办公中,我们最常见的文件格式就是PDF格式的,因为PDF文件的安全性是比较高的,可以防止不小心触碰到键盘修改文件内容,而且PDF文件便于进行文件的传输.但是有时候也需要将PDF转换成CAD,那 ...

  5. u盘 安装 centOS 7

    实际上, 对于服务器的安装, 最好是能够远程批量安装(可能有些难度, 不是专业运维) 镜像下载地址: http://59.80.44.49/isoredirect.centos.org/centos/ ...

  6. C# 运行时的关系

    简介 记录c#对象在托管堆中运行时的相互关系,如下记录了一个方法在执行时候的生命周期,当方法在之前,CLR会先执行将方法里面所有用到的局部变量.参数对应的内存地址等全部存放当前线程栈当中,并且会将所有 ...

  7. 02-align-items的用法

    侧轴是相对的 默认主轴是x 所以侧轴就是y轴 align-items设置侧轴上的子元素排列的方式(单行)纵轴方向上的对齐方式 align-items: flex-start; 顶部对齐 align-i ...

  8. 5.Java基础_Java算术/字符/字符串/赋值运算符

    /* 算术/字符/字符串/赋值 运算符 */ public class OperatorDemo01 { public static void main(String[] args){ //算术运算符 ...

  9. 使用flask搭建微信公众号:完成token的验证

    上一篇文章讨论了官方给的例子验证token失败的解决方法:微信公众号token验证失败 想了一下,还是决定不适用web.py这个框架.因为搜了一下他的中文文档不多,学起来可能会有点麻烦.而且看着他没有 ...

  10. jmeter连接不上MySQL数据库的原因以及解决方法

    1.Cannot create PoolableConnectionFactory (Client does not support authentication protocol requested ...