【HDU6037】Expectation Division(动态规划,搜索)

题面

Vjudge

你有一个数\(n\),\(n\le 10^{24}\),为了方便会告诉你\(n\)分解之后有\(m\)个不同的质因子,并且把这些质因子给你。

你每次可以把\(n\)变成一个它的约数,求变成\(1\)的期望步数。

题解

首先暴力的转移是:

\[f[n]=1+\frac{1}{\sigma(n)}\sum_{d|n}f[d]
\]

不难发现这个状态之和每个质因子的出现次数的集合相关,与质因子是什么无关。

发现\(n\)本质不同的质因子最多只有\(18\)个,那么我们爆搜这个每个质因子出现次数的集合,强制较小的质因子出现次数较大,搜完之后发现状态只有\(172513\)个。

于是我们对于每个\(n\)的质因子出现个数的集合计算答案,只需要求解一个高维前缀和就可以进行转移了。

这里高维前缀和的求法,设\(g[n][j]\)表示对于\(n\)这个数(这个数是爆搜出来的,也就是满足小的质因子的出现次数不会少于大的质因子的出现次数),其前\(j\)个质因子的出现次数都相同,但是\(j\)之后的质因子出现次数小于等于当前位置的所有\(f[n]\)的和,转移的时候枚举给哪一位减一就行了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
#define ll __int128
#define MAX 200200
const ll Limit=(ll)1e12*(ll)1e12;
ll n;int m,Case;
char ch[30];int a[30];
int p[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73};
map<ll,int> M;int tot;ll val[MAX];
double g[MAX][20],f[MAX];
void dfs(int x,int lst,ll s)
{
val[M[s]=++tot]=s;s*=p[x];
for(int i=1;i<=lst&&s<=Limit;++i,s*=p[x])dfs(x+1,i,s);
}
int main()
{
dfs(0,90,1);
for(int i=2;i<=tot;++i)
{
ll x=val[i];for(int j=0;j<18;++j)a[j]=0;
for(int j=0;j<18;++j)while(x%p[j]==0)++a[j],x/=p[j];
for(int j=17;~j;--j)
if(a[j])
{
int k=j;while(k<17&&a[k+1]==a[j])++k;
g[i][j]=g[i][j+1]+g[M[val[i]/p[k]]][j];
}
int tmp=1;
for(int j=0;j<18;++j)tmp*=a[j]+1;
f[i]=(g[i][0]+tmp)/(tmp-1);
for(int j=0;j<18;++j)g[i][j]+=f[i];
}
while(scanf("%s",ch+1)!=EOF)
{
for(int i=1,l=strlen(ch+1);i<=l;++i)n=n*10+ch[i]-48;
scanf("%d",&m);
for(int i=0;i<m;++i)
{
int p;scanf("%d",&p);a[i]=0;
while(n%p==0)n/=p,++a[i];
}
sort(&a[0],&a[m]);reverse(&a[0],&a[m]);
for(int i=0;i<m;++i)
for(int j=1;j<=a[i];++j)
n*=p[i];
printf("Case #%d: %.10lf\n",++Case,f[M[n]]);
for(int i=0;i<m;++i)a[i]=0;n=0;
}
return 0;
}

【HDU6037】Expectation Division(动态规划,搜索)的更多相关文章

  1. HDU6037 Expectation Division 期望、高维前缀和

    传送门 设\(f_x\)表示答案,那么\(f_x = \frac{\sum\limits_{d \mid x} f_d}{\sigma_0(x)} + 1 = \frac{\sigma_0(x) + ...

  2. 【BZOJ4421】[Cerc2015] Digit Division 动态规划

    [BZOJ4421][Cerc2015] Digit Division Description 给出一个数字串,现将其分成一个或多个子串,要求分出来的每个子串能Mod M等于0. 将方案数(mod 1 ...

  3. [AH2017/HNOI2017]大佬(动态规划 搜索)

    /* 神仙yyb 理解题意可以发现 能够对大佬造成的伤害只和你怼了多少天大佬有关, 而且显然天数越多越好 那么我们可以先通过预处理来找出我们最多能够怼多少天大佬 然后我们发现最后我们能怼的血量状态数是 ...

  4. HDU 题目分类

    转载自新浪博客,, http://blog.sina.com.cn/s/blog_71ded6bf0100tuya.html 基础题: 1000.1001.1004.1005.1008.1012.10 ...

  5. N.O.W,O.R,N.E.V.E.R--12days to LNOI2015

    双向链表 单调队列,双端队列 单调栈 堆 带权并查集 hash 表 双hash 树状数组 线段树合并 平衡树 Treap 随机平衡二叉树 Scapegoat Tree 替罪羊树 朝鲜树 块状数组,块状 ...

  6. NOIP考点

    NOIP考点 基础算法 图 树 数论 数据结构 动态规划 搜索 其他算法 省选知识点汇总 图论 数据结构 字符串相关算法及数据结构 数学 计算几何 搜索 动态规划 其他算法 转自:巨佬的博客 加*号是 ...

  7. NOIP 2010

    tags: NOIP 并查集 动态规划 搜索 categories: 信息学竞赛 总结 机器翻译 乌龟棋 关押罪犯 引水入城 机器翻译 Solution 维护一个队列, 每次从词典中查词时将单词加入队 ...

  8. HDU 多校1.5

    Expectation Division Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/O ...

  9. codevs与noi做题改错本目录

    从2016.2.13开始: 1.  排序超时的问题---------目录:-测试习题 2.  超高精度乘法超时问题-----------目录:高精度计算 算法:快速傅里叶算法. 压位算法 3. 高精度 ...

随机推荐

  1. WASM 成为 HTML、CSS 与 JS 之后的第 4 门 Web 语言

    大家都知道,万维网联盟 W3C 认证的 Web 语言有 HTML.CSS 与 JavaScript,而近日联盟正式宣布 WebAssembly 核心规范(WebAssembly Core Specif ...

  2. 生成对抗性网络GAN

    同VAE模型类似,GAN模型也包含了一对子模型.GAN的名字中包含一个对抗的概念,为了体现对抗这个概念,除了生成模型,其中还有另外一个模型帮助生成模型更好地学习观测数据的条件分布.这个模型可以称作判别 ...

  3. 26.异常检测---孤立森林 | one-class SVM

    novelty detection:当训练数据中没有离群点,我们的目标是用训练好的模型去检测另外发现的新样本 outlier  dection:当训练数据中包含离群点,模型训练时要匹配训练数据的中心样 ...

  4. 推荐系统| ① Movies概述

    数据生命周期 项目系统架构    用户可视化:主要负责实现和用户的交互以及业务数据的展示,主体采用AngularJS2进行实现,部署在Apache服务上.    综合业务服务:主要实现JavaEE层面 ...

  5. 权限控制终于来了!Redis 6.0新特性——ACLs

    在2019年纽约的Redis Day上,Salvatore Sanfilippo(AKA Antirez)介绍了即将发布的Redis 6.0的新特性.以下是关于ACLs的内容. ACLs简介 在过去的 ...

  6. 最小割最大流定理&残量网络的性质

    最小割最大流定理的内容: 对于一个网络流图 $G=(V,E)$,其中有源点和汇点,那么下面三个条件是等价的: 流$f$是图$G$的最大流 残量网络$G_f$不存在增广路 对于$G$的某一个割$(S,T ...

  7. Flask 教程 第八章:粉丝

    本文翻译自The Flask Mega-Tutorial Part VIII: Followers 这是Flask Mega-Tutorial系列的第八部分,我将告诉你如何实现类似于Twitter和其 ...

  8. SSM框架之Spring(4)AOP

    Spring(4)AOP 1.AOP概述 在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种 ...

  9. axios请求无法携带cookie

    背景 最近在用vue重构公司公司AngularJS 1.X项目,老项目身份认证采用的cookie,前端ajax库采用是angularJS的$http/$resource服务,新版采用的是axios,但 ...

  10. 输出所有java进程的gc状态

    #!/bin/sh #read -t -p "请输入jstat命令监控间隔,次数:" time count read -p "输入jstat命令监控间隔(1s输出一次,输 ...