Elastic Stack 笔记(七)Elasticsearch5.6 聚合分析
一、前言
Elasticsearch 是一个分布式的全文搜索引擎,索引和搜索是 Elasticsarch 的基本功能。同时,Elasticsearch 的聚合(Aggregations)功能也时分强大,允许在数据上做复杂的分析统计。ES 提供的聚合分析功能主要有指标聚合、桶聚合、管道聚合和矩阵聚合。需要主要掌握的是前两个,即指标聚合和桶聚合。
聚合分析的官方文档:Aggregations
二、聚合分析
2.1 指标聚合
指标聚合官网文档:Metric
指标聚合中主要包括 min、max、sum、avg、stats、extended_stats、value_count 等聚合,相当于 SQL 中的聚合函数。
指标聚合中包括如下聚合:
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
Aggregations that keep track and compute metrics over a set of documents.
在一组文档中跟踪和计算度量的聚合。如下以 max 聚合为例:
Max Aggregation
max 聚合官网文档:Max Aggregation
max 聚合用于最大值统计,与 SQL 中的聚合函数 max() 的作用类似,其中 "max_price" 为自定义的聚合名称。
##Max Aggregation
GET books/_search
{
"size": 0,
"aggs": {
"max_price": {
"max": {
"field": "price"
}
}
}
}
返回结果如下:
{
"took": 6,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 5,
"max_score": 0,
"hits": []
},
"aggregations": {
"max_price": {
"value": 81.4
}
}
}
Cardinality Aggregation
基数统计聚合官网文档:Cardinality Aggregation
Cardinality Aggregation 用于基数查询,其作用是先执行类似 SQL 中的 distinct 操作,去掉集合中的重复项,然后统计排重后的集合长度。
##Cardinality Aggregation
GET books/_search
{
"size": 0,
"aggs": {
"all_language": {
"cardinality": {
"field": "language"
}
}
}
}
返回结果如下:
{
"took": 41,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 5,
"max_score": 0,
"hits": []
},
"aggregations": {
"all_language": {
"value": 3
}
}
}
Stats Aggregation
基本统计聚合官网文档:Stats Aggregation
Stats Aggregation 用于基本统计,会一次返回 count、max、min、avg 和 sum 这 5 个指标。如下:
##Stats Aggregation
GET books/_search
{
"size": 0,
"aggs": {
"stats_pirce": {
"stats": {
"field": "price"
}
}
}
}
返回结果如下:
{
"took": 5,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 5,
"max_score": 0,
"hits": []
},
"aggregations": {
"stats_pirce": {
"count": 5,
"min": 46.5,
"max": 81.4,
"avg": 63.8,
"sum": 319
}
}
}
Extended Stats Aggregation
高级统计聚合官网文档:Extended Stats Aggregation
用于高级统计,和基本统计功能类似,但是会比基本统计多4个统计结果:平方和、方差、标准差、平均值加/减两个标准差的区间。
##Extended Stats Aggregation
GET books/_search
{
"size": 0,
"aggs": {
"extend_stats_pirce": {
"extended_stats": {
"field": "price"
}
}
}
}
返回响应结果:
{
"took": 14,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 5,
"max_score": 0,
"hits": []
},
"aggregations": {
"extend_stats_pirce": {
"count": 5,
"min": 46.5,
"max": 81.4,
"avg": 63.8,
"sum": 319,
"sum_of_squares": 21095.46,
"variance": 148.65199999999967,
"std_deviation": 12.19229264740638,
"std_deviation_bounds": {
"upper": 88.18458529481276,
"lower": 39.41541470518724
}
}
}
}
Value Count Aggregation
文档数量聚合官网文档:Value Count Aggregation
Value Count Aggregation 可按字段统计文档数量。
##Value Count Aggregation
GET books/_search
{
"size": 0,
"aggs": {
"doc_count": {
"value_count": {
"field": "author"
}
}
}
}
返回结果如下:
{
"took": 6,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 5,
"max_score": 0,
"hits": []
},
"aggregations": {
"doc_count": {
"value": 5
}
}
}
注意:
text 类型的字段不能做排序和聚合(terms Aggregation 除外),如下对 title 字段做聚合,title 定义为 text:
GET books/_search
{
"size": 0,
"aggs": {
"doc_count": {
"value_count": {
"field": "title"
}
}
}
}
返回结果如下:
{
"error": {
"root_cause": [
{
"type": "illegal_argument_exception",
"reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [title] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
}
],
"type": "search_phase_execution_exception",
"reason": "all shards failed",
"phase": "query",
"grouped": true,
"failed_shards": [
{
"shard": 0,
"index": "books",
"node": "6n3douACShiPmlA9j2soBw",
"reason": {
"type": "illegal_argument_exception",
"reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [title] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
}
}
]
},
"status": 400
}
2.2 桶聚合
桶聚合官网文档:Bucket Aggregations
Bucket 可以理解为一个桶,它会遍历文档中的内容,凡是符合某一要求的就放入一个桶中,分桶相当与 SQL 中 SQL 中的 group by。
桶聚合包括如下聚合:
- Adjacency Matrix Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
terms Aggregation 用于分组聚合,统计属于各编程语言的书籍数量,如下:
GET books/_search
{
"size": 0,
"aggs": {
"terms_count": {
"terms": {
"field": "language"
}
}
}
}
返回结果如下:
{
"took": 31,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 5,
"max_score": 0,
"hits": []
},
"aggregations": {
"terms_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "java",
"doc_count": 2
},
{
"key": "python",
"doc_count": 2
},
{
"key": "javascript",
"doc_count": 1
}
]
}
}
}
在 terms 分桶的基础上,还可以对每个桶进行指标聚合。例如,想统计每一类图书的平局价格,可以先按照 language 字段进行 Terms Aggregation,再进行 Avg Aggregattion,查询语句如下:
GET books/_search
{
"size": 0,
"aggs": {
"terms_count": {
"terms": {
"field": "language"
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
返回结果如下:
{
"took": 8,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 5,
"max_score": 0,
"hits": []
},
"aggregations": {
"terms_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "java",
"doc_count": 2,
"avg_price": {
"value": 58.35
}
},
{
"key": "python",
"doc_count": 2,
"avg_price": {
"value": 67.95
}
},
{
"key": "javascript",
"doc_count": 1,
"avg_price": {
"value": 66.4
}
}
]
}
}
}
Range Aggregation
Range Aggregation 是范围聚合,用于反映数据的分布情况。比如,对 books 索引中的图书按照价格区间在 0~50、50~80、80 以上进行范围聚合,如下:
GET books/_search
{
"size": 0,
"aggs": {
"price_range": {
"range": {
"field": "price",
"ranges": [
{"to": 50},
{"from": 50, "to": 80},
{"from": 80}
]
}
}
}
}
返回结果如下:
{
"took": 16,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 5,
"max_score": 0,
"hits": []
},
"aggregations": {
"price_range": {
"buckets": [
{
"key": "*-50.0",
"to": 50,
"doc_count": 1
},
{
"key": "50.0-80.0",
"from": 50,
"to": 80,
"doc_count": 3
},
{
"key": "80.0-*",
"from": 80,
"doc_count": 1
}
]
}
}
}
Range Aggregation 不仅可以对数值型字段进行范围统计,也可以作用在日期类型上。Date Range Aggregation 专门用于日期类型的范围聚合,和 Range Aggregation 的区别在于日期的起止值可以使用数学表达式。
2.3 管道聚合
管道聚合官网文档:Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
Pipeline Aggregations 处理的对象是其他聚合的输出(而不是文档)。
2.4 矩阵聚合
矩阵聚合官网文档:Matrix Aggregations
Matrix Stats 聚合是一种面向数值型的聚合,用于计算一组文档字段中的以下统计信息:
计数:计算过程中每种字段的样本数量;
平均值:每个字段数据的平均值;
方差:每个字段样本数据偏离平均值的程度;
偏度:量化每个字段样本数据在平均值附近的非对称分布情况;
峰度:量化每个字段样本数据分布的形状;
协方差:一种量化描述一个字段数据随另一个字段数据变化程度的矩阵;
相关性:描述两个字段数据之间的分布关系,其协方差矩阵取值在[-1,1]之间。
主要用于计算两个数值型字段之间的关系。如对日志记录长度和 HTTP 状态码之间关系的计算。
GET /_search
{
"aggs": {
"statistics": {
"matrix_stats": {
"fields": ["log_size", "status_code"]
}
}
}
}
Elastic Stack 笔记(七)Elasticsearch5.6 聚合分析的更多相关文章
- Elastic Stack 笔记(八)Elasticsearch5.6 Java API
博客地址:http://www.moonxy.com 一.前言 Elasticsearch 底层依赖于 Lucene 库,而 Lucene 库完全是 Java 编写的,前面的文章都是发送的 RESTf ...
- Elastic Stack 笔记(一)CentOS7.5 搭建 Elasticsearch5.6 集群
博客地址:http://www.moonxy.com 一.前言 Elasticsearch 是一个基于 Lucene 的分布式搜索引擎服务,采用 Java 语言编写,使用 Lucene 构建索引.提供 ...
- Elastic Stack 笔记(四)Elasticsearch5.6 索引及文档管理
博客地址:http://www.moonxy.com 一.前言 在 Elasticsearch 中,对文档进行索引等操作时,既可以通过 RESTful 接口进行操作,也可以通过 Java 也可以通过 ...
- Elastic Stack 笔记(三)Kibana5.6 安装
博客地址:http://www.moonxy.com 一.前言 Kibana 是 Elastic Stack 公司推出的一个针对 Elasticsearch 的开源分析及可视化平台,可以搜索.查看存放 ...
- Elasticsearch学习笔记(三)聚合分析Agg
一.设置fielddata PUT /index/_mapping/type { "properties":{ "fieldName" ...
- Elastic Stack 笔记(十)Elasticsearch5.6 For Hadoop
博客地址:http://www.moonxy.com 一.前言 ES-Hadoop 是连接快速查询和大数据分析的桥梁,它能够无间隙的在 Hadoop 和 ElasticSearch 上移动数据.ES ...
- Elastic Stack 笔记(二)Elasticsearch5.6 安装 IK 分词器和 Head 插件
博客地址:http://www.moonxy.com 一.前言 Elasticsearch 作为开源搜索引擎服务器,其核心功能在于索引和搜索数据.索引是把文档写入 Elasticsearch 的过程, ...
- Elastic Stack 笔记(六)Elasticsearch5.6 搜索详解
博客地址:http://www.moonxy.com 一.前言 Elasticsearch 主要包含索引过程和搜索过程. 索引过程:一条文档被索引到 Elasticsearch 之后,默认情况下 ES ...
- Elastic Stack 笔记(九)Elasticsearch5.6 集群管理
博客地址:http://www.moonxy.com 一.前言 集群搭建好以后,在日常中就要对集群的使用情况进行监控,对于一个多节点集群,由于网络连接问题,出现宕机.脑裂等异常情况都是有可能发生的.E ...
随机推荐
- 网编(小白心得osi七层协议)
目录 1 C/S B/S架构 2网络通信原理 3osi七层协议 数据链路层 网络层 传输层 应用层 1 C/S B/S架构 C:client端(客户端) B:browse 浏览器 S: s ...
- 关于sparksql中设置自定义自增列的相关要点(工作共踩过的坑-1)
小白终于进入了职场,从事大数据方面的工作! 分到项目组了,搬砖的时候遇到了一个这样的问题. 要求:用spark实现oracle的存储过程中计算部分. 坑:由于报表中包含了一个ID字段,其要求是不同的区 ...
- Redis的常用命令与Java整合及高级应用篇
一,redis是什么? 首先数据库分为关系型数据库和非关系型数据库,关系型数据库是采用关系模型来组织数据的数据库,简单来说就是二维表格模型,同时保证事务的一致性. 相反非关系型数据库采用key ...
- python之web自动化验证码识别解决方案
验证码识别解决方案 对于web应用程序来讲,处于安全性考虑,在登录的时候,都会设置验证码,验证码的类型种类繁多,有图片中辨别数字字母的,有点击图片中指定的文字的,也有算术计算结果的,再复杂一点就是滑动 ...
- nginx对特定参数限流
接到一个需求, 需要对请求(GET)里面的某个参数 的特定的值, 进行限流; 因为不限流的话, 不知道什么时候这个id的请求飙一下, 服务端就被压死了... 就像这样: /index.html?id ...
- Linux shell 获得字符串所在行数及位置
shell 获得字符串所在行数及位置 01 获取字符串所在的行数 方式一:用grep -n [root@root]# cat test apple bit create delect exe flow ...
- egret之移除带参数的监听事件
this.selectBtn.addEventListener(egret.TouchEvent.TOUCH_TAP, this.onClickNewIndo.bind(this,this.data) ...
- MySql定时器,亲测可用
1. 查看数据库的event功能是否开启,在MySql中event默认是关闭的,需要查看并且要确保event处于开启状态 sql:show VARIABLES LIKE '%sche%'; 如果eve ...
- Unity的UGUI在SetParent后修改UI的localposition问题
正常情况下,UGUI设置UI的localposition可以直接赋值 UIxxx.rectTransform.localPosition = ] / 2f, , ); 运行后在Unity的Inspec ...
- spring-cloud-kubernetes背后的三个关键知识点
在<你好spring-cloud-kubernetes>一文中,对spring-cloud-kubernetes这个SpringCloud官方kubernetes服务框架有了基本了解,今天 ...