一:线性logistic 回归

代码如下:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.optimize as opt
import seaborn as sns #读取数据集
path = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted']) #将正负数据集分开
positive = data[data['Admitted'].isin([1])]
negative = data[data['Admitted'].isin([0])] '''
#查看分布
fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=60, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=50, c='r', marker='x', label='UnAdmitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')
plt.show()
''' #sigmoid函数实现
def sigmoid(h):
return 1 / (1 + np.exp(-h)) '''
#测试sigmoid函数
nums = np.arange(-10, 11, step=1)
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(nums, sigmoid(nums), 'k')
plt.show()
''' #计算损失函数值
def cost(theta, X, y):
theta = np.matrix(theta)
X = np.matrix(X)
y = np.matrix(y) part1 = np.multiply(-y, np.log(sigmoid(X * theta.T)))
part2 = np.multiply((1-y), np.log(1-sigmoid(X * theta.T)))
return np.sum(part1-part2) / len(X) #在原矩阵第1列前加一列全1
data.insert(0, 'ones', 1) cols = data.shape[1] X = data.iloc[:, 0:cols-1]
y = data.iloc[:, cols-1:cols] X = np.array(X.values)
y = np.array(y.values)
theta = np.zeros(3) #这里是一个行向量 #返回梯度向量,注意是向量
def gradient(theta, X, y):
theta = np.matrix(theta)
X = np.matrix(X)
y = np.matrix(y) parameters = theta.ravel().shape[1]
grad = np.zeros(parameters) error = sigmoid(X * theta.T) - y grad = error.T.dot(X)
grad = grad / len(X)
return grad #通过高级算法计算出最好的theta值
result = opt.fmin_tnc(func=cost, x0=theta, fprime=gradient, args=(X, y)) #print(cost(result[0], X, y)) #测试所得theta的性能
#计算原数据集的预测情况
def predict(theta, X):
theta = np.matrix(theta)
X = np.matrix(X) probability = sigmoid(X * theta.T)
return [1 if i > 0.5 else 0 for i in probability] theta_min = result[0]
predictions = predict(theta_min, X) correct = [1 if((a == 1 and b == 1) or(a == 0 and b == 0)) else 0 for(a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print('accuracy = {0}%'.format(accuracy))#训练集测试准确度89% # 作图
theta_temp = theta_min
theta_temp = theta_temp / theta_temp[2] x = np.arange(130, step=0.1)
y = -(theta_temp[0] + theta_temp[1] * x)
#画出原点
sns.set(context='notebook', style='ticks', font_scale=1.5)
sns.lmplot('Exam 1', 'Exam 2', hue='Admitted', data=data,
size=6,
fit_reg=False,
scatter_kws={"s": 25}
)
#画出分界线
plt.plot(x, y, 'grey')
plt.xlim(0, 130)
plt.ylim(0, 130)
plt.title('Decision Boundary')
plt.show()

二:非线性logistic 回归(正则化)

代码如下:

import pandas as pd
import numpy as np
import scipy.optimize as opt
import matplotlib.pyplot as plt path = 'ex2data2.txt'
data = pd.read_csv(path, header=None, names=['Test 1', 'Test 2', 'Accepted']) positive = data[data['Accepted'].isin([1])]
negative = data[data['Accepted'].isin([0])] '''
#显示原始数据的分布
fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive['Test 1'], positive['Test 2'], s=50, c='b', marker='o', label='Accepted')
ax.scatter(negative['Test 1'], negative['Test 2'], s=50, c='r', marker='x', label='Unaccepted')
ax.legend() #显示右上角的Accepted 和 Unaccepted标签
ax.set_xlabel('Test 1 Score')
ax.set_ylabel('Test 2 Score')
plt.show()
'''
degree = 5
x1 = data['Test 1']
x2 = data['Test 2']
#在data的第三列插入一列全1
data.insert(3, 'Ones', 1) #创建多项式特征值,最高阶为4
for i in range(1, degree):
for j in range(0, i):
data['F' + str(i) + str(j)] = np.power(x1, i-j) * np.power(x2, j) #删除原数据中的test 1和test 2两列
data.drop('Test 1', axis=1, inplace=True)
data.drop('Test 2', axis=1, inplace=True) #sigmoid函数实现
def sigmoid(h):
return 1 / (1 + np.exp(-h)) def cost(theta, X, y, learnRate):
theta = np.matrix(theta)
X = np.matrix(X)
y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T)))
second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))
reg = (learnRate / (2 * len(X))) * np.sum(np.power(theta[:, 1:theta.shape[1]], 2))
return np.sum(first - second) / len(X) + reg learnRate = 1
cols = data.shape[1] X = data.iloc[:, 1:cols]
y = data.iloc[:, 0:1] X = np.array(X)
y = np.array(y)
theta = np.zeros(X.shape[1]) #计算原数据集的预测情况
def predict(theta, X):
theta = np.matrix(theta)
X = np.matrix(X) probability = sigmoid(X * theta.T)
return [1 if i > 0.5 else 0 for i in probability] def gradientReg(theta, X, y, learnRate):
theta = np.matrix(theta)
X = np.matrix(X)
y = np.matrix(y) paramates = int(theta.ravel().shape[1])
grad = np.zeros(paramates) grad = (sigmoid(X * theta.T) - y).T * X / len(X) + (learnRate / len(X)) * theta[:, i]
grad[0] = grad[0] - (learnRate / len(X)) * theta[:, i]
return grad result = opt.fmin_tnc(func=cost, x0=theta, fprime=gradientReg, args=(X, y, learnRate))
print(result) theta_min = np.matrix(result[0])
predictions = predict(theta_min, X)
correct = [1 if((a == 1 and b == 1) or(a == 0 and b == 0)) else 0 for(a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct)) print('accuracy = {0}%'.format(accuracy))

logistic 回归(线性和非线性)的更多相关文章

  1. 浅谈Logistic回归及过拟合

    判断学习速率是否合适?每步都下降即可.这篇先不整理吧... 这节学习的是逻辑回归(Logistic Regression),也算进入了比较正统的机器学习算法.啥叫正统呢?我概念里面机器学习算法一般是这 ...

  2. 机器学习公开课笔记(3):Logistic回归

    Logistic 回归 通常是二元分类器(也可以用于多元分类),例如以下的分类问题 Email: spam / not spam Tumor: Malignant / benign 假设 (Hypot ...

  3. Logistic回归总结

    原文:http://blog.csdn.net/dongtingzhizi/article/details/15962797  Logistic回归总结 作者:洞庭之子 微博:洞庭之子-Bing (2 ...

  4. 机器学习(4)之Logistic回归

    机器学习(4)之Logistic回归 1. 算法推导 与之前学过的梯度下降等不同,Logistic回归是一类分类问题,而前者是回归问题.回归问题中,尝试预测的变量y是连续的变量,而在分类问题中,y是一 ...

  5. Logistic回归(逻辑回归)和softmax回归

    一.Logistic回归 Logistic回归(Logistic Regression,简称LR)是一种常用的处理二类分类问题的模型. 在二类分类问题中,把因变量y可能属于的两个类分别称为负类和正类, ...

  6. logistic回归学习

    logistic回归是一种分类方法,用于两分类的问题,其基本思想为: 寻找合适的假设函数,即分类函数,用来预测输入数据的结果: 构造损失函数,用来表示预测的输出结果与训练数据中实际类别之间的偏差: 最 ...

  7. Logistic回归和SVM的异同

    这个问题在最近面试的时候被问了几次,让谈一下Logistic回归(以下简称LR)和SVM的异同.由于之前没有对比分析过,而且不知道从哪个角度去分析,一时语塞,只能不知为不知. 现在对这二者做一个对比分 ...

  8. 机器学习-- Logistic回归 Logistic Regression

    转载自:http://blog.csdn.net/linuxcumt/article/details/8572746 1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是 ...

  9. 【转载】logistic回归

    原文地址:https://www.cnblogs.com/zichun-zeng/p/3824745.html 1. logistic回归与一般线性回归模型的区别: (1)     线性回归的结果变量 ...

随机推荐

  1. ping测试丢包率

    测试环境:Centos 6.4 增加参数:-i 例如: #ping -i 0.01 172.16.3.1 则每隔0.01秒ping一次

  2. CQRS(Command and Query Responsibility Segregation)与EventSources实例

    CQRS The CQRS pattern and event sourcing are not mere simplistic solutions to the problems associate ...

  3. JMeter基础知识系列一

    1.Jmeter简介: Apache Jmeter可以用于对静态和动态的资源(文件.web动态语言-PHP.java.ASP.net.java对象.数据库和查询.FTP服务器等)的性能进行测试.最初用 ...

  4. Java流程控制之选择语句

    选择语句 选择语句也称之为判断语句,主要有2种写法,一种是if语句,一种是switch语句.下面我们就详细的介绍一下这2种语句的用法. 判断语句if if语句第一种形式: if 格式: 执行流程 首先 ...

  5. HttpClient之用CloseableHttpClient发送post请求

    使用HttpClient发送请求的一般步骤(1) 创建HttpClient对象.(2)创建请求方法的实例,并指定请求URL.如果需要发送GET请求,创建HttpGet对象:如果需要发送POST请求,创 ...

  6. DRF--认证和权限

    前戏 大家都知道http协议是无状态的,每次发送请求他们怎么知道我们是不是登录过呢?我们可以在用户登录之后给用户一个“暗号”,下次请求的时候带着这个“暗号”来.我们拿自己存的和携带过来的进行对比,如果 ...

  7. 【51nod1678】lyk与gcd(莫比乌斯反演+枚举因数)

    点此看题面 大致题意: 一个长度为\(n\)的数组,实现两种操作:单点修改,给定\(i\)求\(\sum_{j=1}^na_j[gcd(i,j)=1]\). 莫比乌斯反演 考虑推一推询问操作的式子: ...

  8. 分析Runtime的属性Property

    一.介绍 在OC中我们可以给任意的一个类以@property的格式声明属性,当然对于这个属性也会采用某一些属性关键字进行修饰,那么属性的真正的面目是啥样子的呢?其实,runtime源码中可以看到,pr ...

  9. IT兄弟连 HTML5教程 HTML语言的语法 2

    HTML颜色值的设置 大多数浏览器都支持颜色名集合,颜色值是一个关键字或一个RGB格式的数字,在网页中用得很多.仅仅有16种颜色名被W3C的HTML 4.0标准所支持,它们是:aqua.black.b ...

  10. 【shell脚本】一键部署LNMP===deploy.sh

    一键部署mysql,php,nginx,通过源码安装部署 #!/bin/bash # 一键部署 LNMP(源码安装版本) menu() { clear echo " ############ ...