Linear regerssion 线性回归

回归:

stock market forecast

f(过去10年股票起伏的资料) = 明天道琼指数点数

self driving car

f(获取的道路图像)= 方向盘角度

recommendation

f(使用者A 商品B)= 购买商品可能性

预测妙蛙种子 cp值 combat power

f( xs ) =cp after evolution

xs

xhp

xw

xh

找model

定义 function set

step 1: model

y = b+ w* xcp  进化前的CP值

f1 : y= 10.0+9*xcp

f2: y= 9.8+9.2*xcp

f3: y= -0.8-1.2*xcp

infinite 有很多

linear model : y=b+sum(wi*xi)

xi feature wi weight b bais

step2: goodness of function

x1 ,   y^1

x2 ,   y^2

...

x10 ,   y^10

x 进化前的CP值

y 进化后的CP值

xncp  

损失函数

L(f)=L(w,b)

使用某个function 的wb 用来计算L

step: best function

gradient descent

L(w) w

w*= arg minwL(w)

穷举W所有值 ,看计算那个值? 效率低

可以: 1) 随机选取初始点 W0

2) 计算 dL/dw| w=w0

也就是切线的斜率      negative -》 increase w

positive -> decrease w

往左边走一步 还是右边走,LOSS会减少?

stepsize: 却觉于

1)现在的微分值越大,也就是越陡峭,

2)还有就是常数项 learning rate

w1 <- w0- n* dl/dw|w=w0

w2 <- w1-n*dl/dw|w=w1

local optimal 会找到局部最小值,而不是global optimal

如果是两个参数? w*,b* = arg min w,b L(w,b)

与上面的过程一致

有两个参数 w,b 决定了function

in linear regression ,the loss function L ins convex

NO local optimal

how's the results?

Generalization 泛化性能

selecting another model

y= b+w1*xcp+w2*(xcp)2

有没有可能更复杂的model,

how about more complex model?

在train data上效果是模型越复杂,效果很好,这是因为

越复杂的模型是包括简单的模型

A more complex model yields lower error on training data

但是在test data上效果不一定是。这就是overfitting

只考虑进化前的cp值可能还不够,同时需要考虑物种

预测重新设计function Set

if xs=pidgey y=b1+w1*xcp

也是线性模型,不同种类的物种,它的model不一样

考虑其他的影响因素 用更加复杂的模型

已经过拟合了

regularization 正则项 ,去解决过拟合,

当W很小,接近0,当输入有变化,output对输入变化不敏感。

输出对输入就不敏感,function 就平滑。如果一个平滑的function

收到噪声影响小。

调整b 和function平滑没关系,只是和位置有关系

lamad 越大,考虑训练误差越小

我们希望function平滑,但不能太平滑,调整lamad

机器学习 1 regression的更多相关文章

  1. 机器学习 Logistic Regression

    Logistic Regression 之前我们讨论过回归问题,并且讨论了线性回归模型.现在我们来看看分类问题,分类问题与回归问题类似,只不过输出变量一个是离散的,一个是连续的.我们先关注二分类问题, ...

  2. Machine Learning 学习笔记

    点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1- ...

  3. [Machine Learning & Algorithm]CAML机器学习系列1:深入浅出ML之Regression家族

    声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 符号定义 这里定义<深入浅出ML>系列中涉及到的公式符号,如无特殊说明,符号 ...

  4. 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类

    logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...

  5. Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

    原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  6. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  7. Stanford机器学习---第一讲. Linear Regression with one variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  8. Coursera台大机器学习课程笔记8 -- Linear Regression

    之前一直在讲机器为什么能够学习,从这节课开始讲一些基本的机器学习算法,也就是机器如何学习. 这节课讲的是线性回归,从使Ein最小化出发来,介绍了 Hat Matrix,要理解其中的几何意义.最后对比了 ...

  9. 机器学习之多变量线性回归(Linear Regression with multiple variables)

    1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...

随机推荐

  1. 工作总结_JS_1

    获取点击下的相对应的div: $('> div', this).show(); 本身同级下的相对应的div:   $('>div[name=vv]', $(this).siblings(& ...

  2. java学习之面向对象(2)

    在描述事物的时候,该事物已存在就具备的一些内容,这是我们就可以把它们都定义在构造函数中,那么什么是构造函数呢? 构造函数就是构建创造对象时调用的函数,它可以给对象进行初始化.构造函数与类名相同,第一个 ...

  3. java异常处理

    try{}catch(){}中的代码与外部代码之间有一定的逻辑关系,需要考虑到如果抛出异常的情况下,外部代码是否可以执行. 在需要捕获异常前尽量不要代入非异常代码,捕获后相关的代码放在一起.

  4. wpf之mvvm基类

    当我们用MVVM设计模式的时候要实现INotifyPropertyChanged,每次都要实现这个接口比较麻烦,所以基类的作用就体现出来了.代码如下:   1 2 3 4 5 6 7 8 9 10 1 ...

  5. ASP.NET Core中显示自定义错误页面

    在 ASP.NET Core 中,默认情况下当发生500或404错误时,只返回http状态码,不返回任何内容,页面一片空白. 如果在 Startup.cs 的 Configure() 中加上 app. ...

  6. ABP理论学习之多租户

    返回总目录 本篇目录 什么是多租户 ABP中的多租户 什么是多租户 维基百科:"软件多租户是指一种软件架构,在这种软件架构中,软件的一个实例运行在服务器上并且为多个租户服务".一个 ...

  7. TDDL分库分表规则

    规则如下: 判断一个ID在哪个库里的公式是:id % 4 / 2判断一个ID在哪个表里的公式是:id % 4 % 2 其中4表示总共有多少个分表,2表示总共有多少个数据库:上面这个例子,表示总共有2个 ...

  8. 剑指Offer面试题:14.链表的倒数第k个节点

    PS:这是一道出境率极高的题目,记得去年参加校园招聘时我看到了3次,但是每次写的都不完善. 一.题目:链表的倒数第k个节点 题目:输入一个链表,输出该链表中倒数第k个结点.为了符合大多数人的习惯,本题 ...

  9. 关于大型网站技术演进的思考(二十)--网站静态化处理—web前端优化—中(12)

    Web前端很多优化原则都是从如何提升网络通讯效率的角度提出的,但是这些原则使用的时候还是有很多陷阱在里面,如果我们不能深入理解这些优化原则背后所隐藏的技术原理,很有可能掉进这些陷阱里,最终没有达到最佳 ...

  10. 【java并发编程实战】-----线程基本概念

    学习Java并发已经有一个多月了,感觉有些东西学习一会儿了就会忘记,做了一些笔记但是不系统,对于Java并发这么大的"系统",需要自己好好总结.整理才能征服它.希望同仁们一起来学习 ...