机器学习 1 regression
Linear regerssion 线性回归
回归:
stock market forecast
f(过去10年股票起伏的资料) = 明天道琼指数点数
self driving car
f(获取的道路图像)= 方向盘角度
recommendation
f(使用者A 商品B)= 购买商品可能性
预测妙蛙种子 cp值 combat power
f( xs ) =cp after evolution
xs
xhp
xw
xh
找model
定义 function set
step 1: model
y = b+ w* xcp 进化前的CP值
f1 : y= 10.0+9*xcp
f2: y= 9.8+9.2*xcp
f3: y= -0.8-1.2*xcp
infinite 有很多
linear model : y=b+sum(wi*xi)
xi feature wi weight b bais
step2: goodness of function
x1 , y^1
x2 , y^2
...
x10 , y^10
x 进化前的CP值
y 进化后的CP值
xncp
损失函数
L(f)=L(w,b)

使用某个function 的wb 用来计算L

step: best function

gradient descent
L(w) w
w*= arg minwL(w)
穷举W所有值 ,看计算那个值? 效率低
可以: 1) 随机选取初始点 W0
2) 计算 dL/dw| w=w0
也就是切线的斜率 negative -》 increase w
positive -> decrease w
往左边走一步 还是右边走,LOSS会减少?
stepsize: 却觉于
1)现在的微分值越大,也就是越陡峭,
2)还有就是常数项 learning rate

w1 <- w0- n* dl/dw|w=w0
w2 <- w1-n*dl/dw|w=w1
local optimal 会找到局部最小值,而不是global optimal
如果是两个参数? w*,b* = arg min w,b L(w,b)
与上面的过程一致
有两个参数 w,b 决定了function

in linear regression ,the loss function L ins convex
NO local optimal
how's the results?
Generalization 泛化性能
selecting another model
y= b+w1*xcp+w2*(xcp)2
有没有可能更复杂的model,
how about more complex model?
在train data上效果是模型越复杂,效果很好,这是因为
越复杂的模型是包括简单的模型
A more complex model yields lower error on training data
但是在test data上效果不一定是。这就是overfitting

只考虑进化前的cp值可能还不够,同时需要考虑物种
预测重新设计function Set

if xs=pidgey y=b1+w1*xcp
也是线性模型,不同种类的物种,它的model不一样

考虑其他的影响因素 用更加复杂的模型

已经过拟合了
regularization 正则项 ,去解决过拟合,
当W很小,接近0,当输入有变化,output对输入变化不敏感。
输出对输入就不敏感,function 就平滑。如果一个平滑的function
收到噪声影响小。

调整b 和function平滑没关系,只是和位置有关系
lamad 越大,考虑训练误差越小
我们希望function平滑,但不能太平滑,调整lamad
机器学习 1 regression的更多相关文章
- 机器学习 Logistic Regression
Logistic Regression 之前我们讨论过回归问题,并且讨论了线性回归模型.现在我们来看看分类问题,分类问题与回归问题类似,只不过输出变量一个是离散的,一个是连续的.我们先关注二分类问题, ...
- Machine Learning 学习笔记
点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1- ...
- [Machine Learning & Algorithm]CAML机器学习系列1:深入浅出ML之Regression家族
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 符号定义 这里定义<深入浅出ML>系列中涉及到的公式符号,如无特殊说明,符号 ...
- 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类
logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...
- Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Stanford机器学习---第一讲. Linear Regression with one variable
原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Coursera台大机器学习课程笔记8 -- Linear Regression
之前一直在讲机器为什么能够学习,从这节课开始讲一些基本的机器学习算法,也就是机器如何学习. 这节课讲的是线性回归,从使Ein最小化出发来,介绍了 Hat Matrix,要理解其中的几何意义.最后对比了 ...
- 机器学习之多变量线性回归(Linear Regression with multiple variables)
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...
随机推荐
- Oracle EBS - Profile Setting
EBS Profile Setting (Personalization Basics): Personalization Basics For R12 Forms Enable personaliz ...
- CAD调试时抛出“正试图在 os 加载程序锁内执行托管代码。不要尝试在 DllMain 或映像初始化函数内运行托管代码”异常的解决方法
这些天重装了电脑Win10系统,安装了CAD2012和VS2012,准备进行软件开发.在调试程序的时候,CAD没有进入界面就抛出 “正试图在 os 加载程序锁内执行托管代码.不要尝试在 DllMain ...
- Oracle_R12C_安装注意点_Win64_exectask
安装问题1 原因 - 无法访问临时位置. 操作 - 请确保当前用户具有访问临时位置所需的权限. 附加信息: - 所有节点上的框架设置检查都失败 -原因: 问题的原因不可用 -操作:用户操作不可用 失败 ...
- 分布式数据库中的Paxos 算法
分布式数据库中的Paxos 算法 http://baike.baidu.com/link?url=ChmfvtXRZQl7X1VmRU6ypsmZ4b4MbQX1pelw_VenRLnFpq7rMvY ...
- RPC 的概念模型与实现解析
今天分布式应用.云计算.微服务大行其道,作为其技术基石之一的 RPC 你了解多少?一篇 RPC 的技术总结文章,数了下 5k+ 字,略长,可能也不适合休闲的碎片化时间阅读,可以先收藏抽空再细读:) 全 ...
- TaintDroid剖析之IPC级污点传播
TaintDroid剖析之IPC级污点传播 作者:简行.走位@阿里聚安全 前言 在前三篇文章中我们详细分析了TaintDroid对DVM栈帧的修改,以及它是如何在修改之后的栈帧中实现DVM变量级污点跟 ...
- .NET面试题系列[9] - IEnumerable
.NET面试题系列目录 什么是IEnumerable? IEnumerable及IEnumerable的泛型版本IEnumerable<T>是一个接口,它只含有一个方法GetEnumera ...
- ASP.NET MVC 过滤器(三)
ASP.NET MVC 过滤器(三) 前言 本篇讲解行为过滤器的执行过程,过滤器实现.使用方式有AOP的意思,可以通过学习了解过滤器在框架中的执行过程从而获得一些AOP方面的知识(在顺序执行的过程中, ...
- php性能优化
序 很长时间没有写博文了,最近换了工作,长时间加班,根本没有时间做其他事情!今天闲下来了,想一想php性能方面的事情.这也是我2014年的第一篇博文! 推荐阅读:初学者到中级者应该掌握的! p ...
- [New Portal]Windows Azure Storage (14) 使用Azure Blob的PutBlock方法,实现文件的分块、离线上传
<Windows Azure Platform 系列文章目录> 相关内容 Windows Azure Platform (二十二) Windows Azure Storage Servic ...