Linear regerssion 线性回归

回归:

stock market forecast

f(过去10年股票起伏的资料) = 明天道琼指数点数

self driving car

f(获取的道路图像)= 方向盘角度

recommendation

f(使用者A 商品B)= 购买商品可能性

预测妙蛙种子 cp值 combat power

f( xs ) =cp after evolution

xs

xhp

xw

xh

找model

定义 function set

step 1: model

y = b+ w* xcp  进化前的CP值

f1 : y= 10.0+9*xcp

f2: y= 9.8+9.2*xcp

f3: y= -0.8-1.2*xcp

infinite 有很多

linear model : y=b+sum(wi*xi)

xi feature wi weight b bais

step2: goodness of function

x1 ,   y^1

x2 ,   y^2

...

x10 ,   y^10

x 进化前的CP值

y 进化后的CP值

xncp  

损失函数

L(f)=L(w,b)

使用某个function 的wb 用来计算L

step: best function

gradient descent

L(w) w

w*= arg minwL(w)

穷举W所有值 ,看计算那个值? 效率低

可以: 1) 随机选取初始点 W0

2) 计算 dL/dw| w=w0

也就是切线的斜率      negative -》 increase w

positive -> decrease w

往左边走一步 还是右边走,LOSS会减少?

stepsize: 却觉于

1)现在的微分值越大,也就是越陡峭,

2)还有就是常数项 learning rate

w1 <- w0- n* dl/dw|w=w0

w2 <- w1-n*dl/dw|w=w1

local optimal 会找到局部最小值,而不是global optimal

如果是两个参数? w*,b* = arg min w,b L(w,b)

与上面的过程一致

有两个参数 w,b 决定了function

in linear regression ,the loss function L ins convex

NO local optimal

how's the results?

Generalization 泛化性能

selecting another model

y= b+w1*xcp+w2*(xcp)2

有没有可能更复杂的model,

how about more complex model?

在train data上效果是模型越复杂,效果很好,这是因为

越复杂的模型是包括简单的模型

A more complex model yields lower error on training data

但是在test data上效果不一定是。这就是overfitting

只考虑进化前的cp值可能还不够,同时需要考虑物种

预测重新设计function Set

if xs=pidgey y=b1+w1*xcp

也是线性模型,不同种类的物种,它的model不一样

考虑其他的影响因素 用更加复杂的模型

已经过拟合了

regularization 正则项 ,去解决过拟合,

当W很小,接近0,当输入有变化,output对输入变化不敏感。

输出对输入就不敏感,function 就平滑。如果一个平滑的function

收到噪声影响小。

调整b 和function平滑没关系,只是和位置有关系

lamad 越大,考虑训练误差越小

我们希望function平滑,但不能太平滑,调整lamad

机器学习 1 regression的更多相关文章

  1. 机器学习 Logistic Regression

    Logistic Regression 之前我们讨论过回归问题,并且讨论了线性回归模型.现在我们来看看分类问题,分类问题与回归问题类似,只不过输出变量一个是离散的,一个是连续的.我们先关注二分类问题, ...

  2. Machine Learning 学习笔记

    点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1- ...

  3. [Machine Learning & Algorithm]CAML机器学习系列1:深入浅出ML之Regression家族

    声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 符号定义 这里定义<深入浅出ML>系列中涉及到的公式符号,如无特殊说明,符号 ...

  4. 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类

    logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...

  5. Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

    原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  6. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  7. Stanford机器学习---第一讲. Linear Regression with one variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  8. Coursera台大机器学习课程笔记8 -- Linear Regression

    之前一直在讲机器为什么能够学习,从这节课开始讲一些基本的机器学习算法,也就是机器如何学习. 这节课讲的是线性回归,从使Ein最小化出发来,介绍了 Hat Matrix,要理解其中的几何意义.最后对比了 ...

  9. 机器学习之多变量线性回归(Linear Regression with multiple variables)

    1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...

随机推荐

  1. 编译安装PHP的参数 --with-mysql --with-mysqli --with-apxs2默认路径

    编译安装PHP时指定如下几个参数说明: --with-apxs2=/usr/local/apache/bin/apxs //整合apache,apxs功能是使用mod_so中的LoadModule指令 ...

  2. IOS网络第七天WebView-04仿网易新闻详情

    *************** #import "HMViewController.h" @interface HMViewController () @end @implemen ...

  3. ie8 jquery parents() 获取多个的问题

    今天开发的时候碰到了一个奇怪的问题 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3 ...

  4. mac远程桌面连接windows 8.1 update,提示: 远程桌面连接无法验证您希望连接的计算机的身份

    在网上找到解决方案: SolutionEnable RDP security layer in Group Policy on the machine: Verify that the firewal ...

  5. 非域环境下搭建自动故障转移镜像无法将 ALTER DATABASE 命令发送到远程服务器实例的解决办法

    非域环境下搭建自动故障转移镜像无法将 ALTER DATABASE 命令发送到远程服务器实例的解决办法 环境:非域环境 因为是自动故障转移,需要加入见证,事务安全模式是,强安全FULL模式 做到最后一 ...

  6. 基础知识漫谈(2):从设计UI框架开始

    说UI能延展出一丢丢的东西来,光java就有swing,swt/jface乃至javafx等等UI toolkit,在桌面上它们甚至都不是主流,在web端又有canvas.svg等等. 基于这些UI工 ...

  7. UI控件(UIToolbar)

    @implementation ViewController - (void)viewDidLoad { [super viewDidLoad]; _toolbar = [[UIToolbar all ...

  8. Copy 与MutableCopy的区别

    NSString *string = @"origion"; NSString *stringCopy = [string copy]; NSMutableString *stri ...

  9. Go语言实战 - revel框架教程之权限控制

    一个站点上面最基本都会有三种用户角色,未登录用户.已登录用户和管理员.这一次我们就来看看在revel框架下如何进行权限控制. 因为revel是MVC结构的,每一个url其实都会映射到一个具体的Cont ...

  10. [CORS:跨域资源共享] 同源策略与JSONP

    Web API普遍采用面向资源的REST架构,将浏览器最终执行上下文的JavaScript应用Web API消费者的重要组成部分."同源策略"限制了JavaScript的跨站点调用 ...