机器学习 1 regression
Linear regerssion 线性回归
回归:
stock market forecast
f(过去10年股票起伏的资料) = 明天道琼指数点数
self driving car
f(获取的道路图像)= 方向盘角度
recommendation
f(使用者A 商品B)= 购买商品可能性
预测妙蛙种子 cp值 combat power
f( xs ) =cp after evolution
xs
xhp
xw
xh
找model
定义 function set
step 1: model
y = b+ w* xcp 进化前的CP值
f1 : y= 10.0+9*xcp
f2: y= 9.8+9.2*xcp
f3: y= -0.8-1.2*xcp
infinite 有很多
linear model : y=b+sum(wi*xi)
xi feature wi weight b bais
step2: goodness of function
x1 , y^1
x2 , y^2
...
x10 , y^10
x 进化前的CP值
y 进化后的CP值
xncp
损失函数
L(f)=L(w,b)
使用某个function 的wb 用来计算L
step: best function
gradient descent
L(w) w
w*= arg minwL(w)
穷举W所有值 ,看计算那个值? 效率低
可以: 1) 随机选取初始点 W0
2) 计算 dL/dw| w=w0
也就是切线的斜率 negative -》 increase w
positive -> decrease w
往左边走一步 还是右边走,LOSS会减少?
stepsize: 却觉于
1)现在的微分值越大,也就是越陡峭,
2)还有就是常数项 learning rate
w1 <- w0- n* dl/dw|w=w0
w2 <- w1-n*dl/dw|w=w1
local optimal 会找到局部最小值,而不是global optimal
如果是两个参数? w*,b* = arg min w,b L(w,b)
与上面的过程一致
有两个参数 w,b 决定了function
in linear regression ,the loss function L ins convex
NO local optimal
how's the results?
Generalization 泛化性能
selecting another model
y= b+w1*xcp+w2*(xcp)2
有没有可能更复杂的model,
how about more complex model?
在train data上效果是模型越复杂,效果很好,这是因为
越复杂的模型是包括简单的模型
A more complex model yields lower error on training data
但是在test data上效果不一定是。这就是overfitting
只考虑进化前的cp值可能还不够,同时需要考虑物种
预测重新设计function Set
if xs=pidgey y=b1+w1*xcp
也是线性模型,不同种类的物种,它的model不一样
考虑其他的影响因素 用更加复杂的模型
已经过拟合了
regularization 正则项 ,去解决过拟合,
当W很小,接近0,当输入有变化,output对输入变化不敏感。
输出对输入就不敏感,function 就平滑。如果一个平滑的function
收到噪声影响小。
调整b 和function平滑没关系,只是和位置有关系
lamad 越大,考虑训练误差越小
我们希望function平滑,但不能太平滑,调整lamad
机器学习 1 regression的更多相关文章
- 机器学习 Logistic Regression
Logistic Regression 之前我们讨论过回归问题,并且讨论了线性回归模型.现在我们来看看分类问题,分类问题与回归问题类似,只不过输出变量一个是离散的,一个是连续的.我们先关注二分类问题, ...
- Machine Learning 学习笔记
点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1- ...
- [Machine Learning & Algorithm]CAML机器学习系列1:深入浅出ML之Regression家族
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 符号定义 这里定义<深入浅出ML>系列中涉及到的公式符号,如无特殊说明,符号 ...
- 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类
logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...
- Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Stanford机器学习---第一讲. Linear Regression with one variable
原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Coursera台大机器学习课程笔记8 -- Linear Regression
之前一直在讲机器为什么能够学习,从这节课开始讲一些基本的机器学习算法,也就是机器如何学习. 这节课讲的是线性回归,从使Ein最小化出发来,介绍了 Hat Matrix,要理解其中的几何意义.最后对比了 ...
- 机器学习之多变量线性回归(Linear Regression with multiple variables)
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...
随机推荐
- Javascript 小技能
/* @@截取字符串长度,汉字算2个字符 @@return [string]+'...' */ var subString = function(str, len) { var newLen ...
- Web系统的常用测试方法
在51上看到一篇不错的文章,拿过来分享一下,学习学习! Web系统的常用测试方法如下: 1. 页面链接检查:每一个链接是否都有对应的页面,并且页面之间切换正确. 2. 相关性检查:删除/增加一项会不会 ...
- LA
grmon -altjtag -u 公式rand()%(b-a),是求范围随机数的计算公式,%是做求余运算,正整数对n求余的范围肯定是在0~n-1之间,也就是rand()%(b-a)的范围是0~b-a ...
- 完成整个DAO的实现及测试代码
package cn.itcast.domain; import java.util.Date; public class User { private int id; private String ...
- 微软开源.NET Core的执行引擎CoreCLR{转载}
继去年12月宣布.NET Core开源之后,微软拥抱开源的决心又向前迈了一步,Microsoft于昨日在 .NET Framework Blog上 宣布开源.NET Core 的执行引擎 CoreCL ...
- C#图片色彩的纠正-上
WPF(C#)图片色彩的纠正-上 WPF(C#)图片色彩的纠正-下 前言 对图片进行色彩的纠正,其实与WPF是没有什么关系的,为什么标题又是“WPF(C#)图片色彩的纠正”呢,因为这些图片色彩的纠正功 ...
- 跟vczh看实例学编译原理——一:Tinymoe的设计哲学
自从<序>胡扯了快一个月之后,终于迎来了正片.之所以系列文章叫<看实例学编译原理>,是因为整个系列会通过带大家一步一步实现Tinymoe的过程,来介绍编译原理的一些知识点. 但 ...
- 跟vczh看实例学编译原理——零:序言
在<如何设计一门语言>里面,我讲了一些语言方面的东西,还有痛快的喷了一些XX粉什么的.不过单纯讲这个也是很无聊的,所以我开了这个<跟vczh看实例学编译原理>系列,意在科普一些 ...
- 《Entity Framework 6 Recipes》中文翻译系列 (29) ------ 第五章 加载实体和导航属性之过滤预先加载的实体集合和修改外键关联
翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 5-13 过滤预先加载的实体集合 问题 你想过滤预先加载的实体集合,另外,你想使用 ...
- Atitit.自然语言处理--摘要算法---圣经章节旧约39卷概览bible overview v2 qa1.docx
Atitit.自然语言处理--摘要算法---圣经章节旧约39卷概览bible overview v2 qa1.docx 1. 摘要算法的大概流程2 2. 旧约圣经 (39卷)2 2.1. 与古兰经的对 ...