1136 A Delayed Palindrome(20 分)

Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ with 0≤a​i​​<10 for all i and a​k​​>0. Then N is palindromic if and only if a​i​​=a​k−i​​ for all i. Zero is written 0 and is also palindromic by definition.

Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )

Given any positive integer, you are supposed to find its paired palindromic number.

Input Specification:

Each input file contains one test case which gives a positive integer no more than 1000 digits.

Output Specification:

For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:

A + B = C

where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number -- in this case we print in the last line C is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations. instead.

Sample Input 1:

97152

Sample Output 1:

97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

Sample Input 2:

196

Sample Output 2:

196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
 
 #include <map>
#include <set>
#include <queue>
#include <cmath>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstring>
#include <climits>
#include <iostream>
#include <algorithm>
#define wzf ((1 + sqrt(5.0)) / 2.0)
#define INF 0x3f3f3f3f
#define LL long long
using namespace std; const int MAXN = 2e3 + ; char A[MAXN], B[MAXN], C[MAXN]; void calcB()
{
int len = strlen(A), a = len - , b = ;
for (a ,b ; b < len; ++ b, -- a)
B[b] = A[a];
} void calcC()
{
int len1 = strlen(A), len = len1, b = ;
int temp[MAXN];
for (int i = , j = len1 - ; i < len; ++ i, -- j)
{
if (j != -) b += int(A[j] - '') + int(B[j] - '');
temp[i] = b % ;
b /= ;
if (i == len - && b > ) ++ len;
} for (int i = , j = len - ; i < len; ++ i, -- j)
C[i] = char ('' + temp[j]);
} int main()
{
scanf("%s", &A);
int len = strlen(A), a = len - , b = ;
for (a ,b ; b < len; ++ b, -- a)
B[b] = A[a];
for (int i = ; ; ++ i)
{
if (i == )
{
printf("Not found in 10 iterations.\n");
break;
}
calcB();
if (strcmp(A, B) == )
{
printf("%s is a palindromic number.\n", A);
break;
}
calcC();
printf("%s + %s = %s\n", A, B, C);
strcpy(A, C);
}
return ;
}

pat 1136 A Delayed Palindrome(20 分)的更多相关文章

  1. PAT甲级:1136 A Delayed Palindrome (20分)

    PAT甲级:1136 A Delayed Palindrome (20分) 题干 Look-and-say sequence is a sequence of integers as the foll ...

  2. PAT 1136 A Delayed Palindrome

    1136 A Delayed Palindrome (20 分)   Consider a positive integer N written in standard notation with k ...

  3. PAT 1136 A Delayed Palindrome[简单]

    1136 A Delayed Palindrome (20 分) Consider a positive integer N written in standard notation with k+1 ...

  4. PAT乙级:1088 三人行 (20分)

    PAT乙级:1088 三人行 (20分) 题干 子曰:"三人行,必有我师焉.择其善者而从之,其不善者而改之." 本题给定甲.乙.丙三个人的能力值关系为:甲的能力值确定是 2 位正整 ...

  5. PAT乙级:1064 朋友数 (20分)

    PAT乙级:1064 朋友数 (20分) 题干 如果两个整数各位数字的和是一样的,则被称为是"朋友数",而那个公共的和就是它们的"朋友证号".例如 123 和 ...

  6. PAT A1136 A Delayed Palindrome (20 分)——回文,大整数

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  7. 1136 A Delayed Palindrome (20 分)

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  8. 1136 A Delayed Palindrome (20 分)

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  9. PAT 甲级 1035 Password (20 分)

    1035 Password (20 分) To prepare for PAT, the judge sometimes has to generate random passwords for th ...

随机推荐

  1. 【Redis】Could not get a resource from the pool 实乃集群配置问题

    先说些题外话~自上次确诊为鼻窦炎+过敏性鼻炎到现在已经一个月了,最初那会,从下午到晚上头疼难忍.大概是积劳成疾,以前流鼻涕.打喷嚏的时候从来没有注意过,结果病根一下爆发. 关键在于锁定问题,开始治疗一 ...

  2. ESP8266开发之旅 基础篇② 如何安装ESP8266的Arduino开发环境

    授人以鱼不如授人以渔,目的不是为了教会你具体项目开发,而是学会学习的能力.希望大家分享给你周边需要的朋友或者同学,说不定大神成长之路有博哥的奠基石... QQ技术互动交流群:ESP8266&3 ...

  3. LeetCode122——Best Time to Buy and Sell Stock II

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

  4. HashMap - 类注释

    了解到Java8以后HashMap的实现换了,也看了很多博客一直在向我这个小菜鸡说HashMap的重要.因此我决定洗心革面,好好正视HashMap 基于jdk 8 先从类注释开始入手学习,顺便提高提高 ...

  5. Java基础(八)对象包装器与自动装箱

    1.对象包装器 有时候,需要将int这样的基本类型转换为对象.所有的基本类型都有一个与之对应的类.通常,这些类被称为包装器(wrapper). 这些对象包装类分别是:Integer.Long.Floa ...

  6. Oracle ADG环境搭建

    部署 环境介绍 1,软件安装前基础部署 (两台做同样操作) 1.1,关闭selinux和防火墙 因为centos7里面没有/etc/sysconfig/iptables这个配置文件所以我们首先用yum ...

  7. Mybatis JdbcType与Oracle、MySql 数据类型对应关系

    MyBatis 包含的jdbcType类型 ------------------------------------------------------------------------------ ...

  8. java架构之路-(MQ专题)RocketMQ从入坑到集群详解

    这次我们来说说我们的RocketMQ的安装和参数配置,先来看一下我们RocketMQ的提出和应用场景吧. 早在2009年,阿里巴巴的淘宝第一次提出了双11购物狂欢节,但是在2009年,服务器无法承受到 ...

  9. C语言I作业05

    问题 答案 这个作业属于那个课程 C语言程序设计II 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/CST2019-4/homework/9772 我在 ...

  10. 【XSY2131】【BZOJ1857】【SCOI2010】传送带

    Description 题目描述: 在一个二维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.小y在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动 ...