1136 A Delayed Palindrome(20 分)

Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ with 0≤a​i​​<10 for all i and a​k​​>0. Then N is palindromic if and only if a​i​​=a​k−i​​ for all i. Zero is written 0 and is also palindromic by definition.

Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )

Given any positive integer, you are supposed to find its paired palindromic number.

Input Specification:

Each input file contains one test case which gives a positive integer no more than 1000 digits.

Output Specification:

For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:

A + B = C

where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number -- in this case we print in the last line C is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations. instead.

Sample Input 1:

97152

Sample Output 1:

97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

Sample Input 2:

196

Sample Output 2:

196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
 
 #include <map>
#include <set>
#include <queue>
#include <cmath>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstring>
#include <climits>
#include <iostream>
#include <algorithm>
#define wzf ((1 + sqrt(5.0)) / 2.0)
#define INF 0x3f3f3f3f
#define LL long long
using namespace std; const int MAXN = 2e3 + ; char A[MAXN], B[MAXN], C[MAXN]; void calcB()
{
int len = strlen(A), a = len - , b = ;
for (a ,b ; b < len; ++ b, -- a)
B[b] = A[a];
} void calcC()
{
int len1 = strlen(A), len = len1, b = ;
int temp[MAXN];
for (int i = , j = len1 - ; i < len; ++ i, -- j)
{
if (j != -) b += int(A[j] - '') + int(B[j] - '');
temp[i] = b % ;
b /= ;
if (i == len - && b > ) ++ len;
} for (int i = , j = len - ; i < len; ++ i, -- j)
C[i] = char ('' + temp[j]);
} int main()
{
scanf("%s", &A);
int len = strlen(A), a = len - , b = ;
for (a ,b ; b < len; ++ b, -- a)
B[b] = A[a];
for (int i = ; ; ++ i)
{
if (i == )
{
printf("Not found in 10 iterations.\n");
break;
}
calcB();
if (strcmp(A, B) == )
{
printf("%s is a palindromic number.\n", A);
break;
}
calcC();
printf("%s + %s = %s\n", A, B, C);
strcpy(A, C);
}
return ;
}

pat 1136 A Delayed Palindrome(20 分)的更多相关文章

  1. PAT甲级:1136 A Delayed Palindrome (20分)

    PAT甲级:1136 A Delayed Palindrome (20分) 题干 Look-and-say sequence is a sequence of integers as the foll ...

  2. PAT 1136 A Delayed Palindrome

    1136 A Delayed Palindrome (20 分)   Consider a positive integer N written in standard notation with k ...

  3. PAT 1136 A Delayed Palindrome[简单]

    1136 A Delayed Palindrome (20 分) Consider a positive integer N written in standard notation with k+1 ...

  4. PAT乙级:1088 三人行 (20分)

    PAT乙级:1088 三人行 (20分) 题干 子曰:"三人行,必有我师焉.择其善者而从之,其不善者而改之." 本题给定甲.乙.丙三个人的能力值关系为:甲的能力值确定是 2 位正整 ...

  5. PAT乙级:1064 朋友数 (20分)

    PAT乙级:1064 朋友数 (20分) 题干 如果两个整数各位数字的和是一样的,则被称为是"朋友数",而那个公共的和就是它们的"朋友证号".例如 123 和 ...

  6. PAT A1136 A Delayed Palindrome (20 分)——回文,大整数

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  7. 1136 A Delayed Palindrome (20 分)

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  8. 1136 A Delayed Palindrome (20 分)

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  9. PAT 甲级 1035 Password (20 分)

    1035 Password (20 分) To prepare for PAT, the judge sometimes has to generate random passwords for th ...

随机推荐

  1. The Mininum Function Value (luoguP2085 最小函数值)

    Background\text{Background}Background 1. CSDN's been upgraded today. There's one MORE ad for each pa ...

  2. C#版本websocket及时通信协议实现(教程示例)

    1:Websocket有java.nodejs.python.PHP.等版本 ,我现在使用的是C3版本,服务器端是Fleck.客户端和服务器端来使用websocket的,下面开始讲解如何使用: 2:在 ...

  3. SpringBoot系列:Spring Boot集成Spring Cache,使用EhCache

    前面的章节,讲解了Spring Boot集成Spring Cache,Spring Cache已经完成了多种Cache的实现,包括EhCache.RedisCache.ConcurrentMapCac ...

  4. mysql 数据分析如何实现日报、周报、月报和年报?

    以天为统计周期,是常见需求.周报.月报更是常见需求.长周期项目,甚至有年报需求.我已经掌握了mysql中按天统计,如何实现按年.按月.按周统计呢? 1.已掌握的技能:按天统计 实现以天为统计周期很简单 ...

  5. Tomcat 的单机多实例配置

    有时候需要在一个服务器上部署多个Tomcat,通过不同的端口进行区分,比如,反向代理.但是不想简单的通过复制Tomcat来实现,这样既不方便以后的升级也不方便管理,那么这时候就需要配置Tomcat的单 ...

  6. python学习-正则表达式(十)

    1.查看re模块的全部属性和函数 >>>import re,pprint >>>pprint.pprint(re.__all__) ['match', 'fullm ...

  7. 算法<初级> - 第一章 排序相关问题

    算法 - 第一章 时间复杂度: Big O 时间/空间复杂度计算一样,都是跟输入数据源的大小有关 n->∞ O(logn) 每次只使用数据源的一半,logn同理 最优解 先满足时间复杂度的情况最 ...

  8. zepto源码分析·ajax模块

    准备知识 在看ajax实现的时候,如果对ajax技术知识不是很懂的话,可以参看下ajax基础,以便读分析时不会那么迷糊 全局ajax事件 默认$.ajaxSettings设置中的global为true ...

  9. 利用X-Forwarded-For伪造客户端IP漏洞成因及防范

    内容转载自叉叉哥https://blog.csdn.net/xiao__gui/article/details/83054462 问题背景 在Web应用开发中,经常会需要获取客户端IP地址.一个典型的 ...

  10. 设计模式(十六)Mediator模式

    在实际的工作小组的交流过程是,组员向仲裁者报告,仲裁者向组员下达指示,组员之间不再互相询问和指示.Mediator模式是指,当发生麻烦事情的时候,通知仲裁者:当发生涉及全体组员的事情时,也通知仲裁者. ...