原题传送门

实际按照题意模拟就行

我们先求出字符串的sa

因为要在字符串中出现k次,所以我们枚举\(l,r(r-l+1=k)\)看一共有多少种合法的方案

合法方案的长度下界\(lb\)为\(Max(height[l],lcp(l,r+1))+1\),这样保证子串在[1,l-1]和[r+1,len]中不会作为前缀

合法方案的长度上界\(rb\)为\(lcp(l,r)\),毕竟要求的是出现了k次的字串

如果\(lb<=rb\)我们就进行差分,否则就是没有可行方案

最后差分求前缀和时顺带比最大值即可

数据千万条,清空第一条。

多测不清空,爆零两行泪。

#include <bits/stdc++.h>
#define N 100005
using namespace std;
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Min(register int a,register int b)
{
return a<b?a:b;
}
inline int Max(register int a,register int b)
{
return a>b?a:b;
}
char s[N];
int n,size,tp[N],rak[N],sa[N],tex[N],height[N];
int lg2[N],st[N][25];
inline void Qsort()
{
for(register int i=0;i<=size;++i)
tex[i]=0;
for(register int i=1;i<=n;++i)
++tex[rak[i]];
for(register int i=1;i<=size;++i)
tex[i]+=tex[i-1];
for(register int i=n;i>=1;--i)
sa[tex[rak[tp[i]]]--]=tp[i];
}
inline void sa_build()
{
for(register int i=1;i<=(n<<1)&&i<N;++i)
tp[i]=rak[i]=0;
size=30;
for(register int i=1;i<=n;++i)
rak[i]=s[i]-'a'+1,tp[i]=i;
Qsort();
for(register int w=1,p=0;p<n;size=p,w<<=1)
{
p=0;
for(register int i=1;i<=w;++i)
tp[++p]=n-w+i;
for(register int i=1;i<=n;++i)
if(sa[i]>w)
tp[++p]=sa[i]-w;
Qsort();
swap(tp,rak);
rak[sa[1]]=p=1;
for(register int i=2;i<=n;++i)
rak[sa[i]]=(tp[sa[i-1]]==tp[sa[i]]&&tp[sa[i-1]+w]==tp[sa[i]+w])?p:++p;
}
}
inline void getheight()
{
int k=0;
for(register int i=1;i<=n;++i)
{
if(k)
--k;
int j=sa[rak[i]-1];
while(s[i+k]==s[j+k])
++k;
height[rak[i]]=k;
}
}
inline void st_build()
{
memset(st,0,sizeof(st));
for(register int i=1;i<=n;++i)
st[i][0]=height[i];
for(register int j=1;(1<<j)<=n;++j)
for(register int i=1;i+(1<<j)-1<=n;++i)
st[i][j]=Min(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
inline int getlcp(register int l,register int r)
{
++l;
int k=lg2[r-l+1];
return Min(st[l][k],st[r-(1<<k)+1][k]);
}
int T,m,cnt[N];
int main()
{
lg2[0]=-1;
for(register int i=1;i<N;++i)
lg2[i]=lg2[i>>1]+1;
lg2[0]=0;
scanf("%d",&T);
while(T--)
{
scanf("%s%d",s+1,&m);
n=strlen(s+1);
sa_build();
getheight();
st_build();
memset(cnt,0,sizeof(cnt));
for(register int i=1,x;i<=n;++i)
if(m==1)
{
if((x=Max(height[i],height[i-1]))<n-sa[i]+1);
++cnt[x+1],--cnt[n-sa[i]+2];
}
else
{
int l=Max(height[i],getlcp(i,i+m))+1;
int r=getlcp(i,i+m-1);
if(l<=r)
++cnt[l],--cnt[r+1];
}
for(register int i=1;i<=n;++i)
cnt[i]+=cnt[i-1];
int ans=0;
for(register int i=n;i>=1;--i)
if(cnt[i]>cnt[ans])
ans=i;
if(ans)
write(ans),puts("");
else
puts("-1");
}
return 0;
}

【题解】Luogu P5341 [TJOI2019]甲苯先生和大中锋的字符串的更多相关文章

  1. luogu P5341 [TJOI2019]甲苯先生和大中锋的字符串

    传送门 考虑子串以及出现个数,可以发现SAM可以快速知道每种子串的出现次数,即所在状态的\(endpos\)集合大小,然后一个状态对应的子串长度是一段连续区间,所以可以对每个状态差分一下,就能统计答案 ...

  2. 洛谷P5341 [TJOI2019]甲苯先生和大中锋的字符串

    原题链接P5341 [TJOI2019]甲苯先生和大中锋的字符串 题目描述 大中锋有一个长度为 n 的字符串,他只知道其中的一个子串是祖上传下来的宝藏的密码.但是由于字符串很长,大中锋很难将这些子串一 ...

  3. p5341 [TJOI2019]甲苯先生和大中锋的字符串

    分析 TJOI白给题 建出sam,对于每个点如果它的子树siz和等于k 那么对于这个满足的点它有贡献的长度一定是一个连续区间 直接差分即可 代码 #include<bits/stdc++.h&g ...

  4. [TJOI2019]甲苯先生和大中锋的字符串——后缀自动机+差分

    题目链接: [TJOI2019]甲苯先生和大中锋的字符串 对原串建后缀自动机并维护$parent$树上每个点的子树大小,显然子树大小为$k$的节点所代表的子串出现过$k$次,那么我们需要将$[len[ ...

  5. 【洛谷 P5341】 [TJOI2019]甲苯先生和大中锋的字符串(后缀自动机)

    题目链接 建出\(sam\),求出parent tree上每个点的\(endpos\)集合大小. 如果等于\(k\),说明到达这个点的都可以.给\((len[fa(i)],len[i]]\)的\(cn ...

  6. Tjoi2019 甲苯先生和大中锋的字符串 后缀自动机_差分

    tjoi胆子好大,直接出了两道送分题...... 都 9102 年了,还有省选出模板题QAQ...... Code: #include <bits/stdc++.h> #define se ...

  7. [TJOI2019]甲苯先生和大中锋的字符串

    有个叫asuldb的神仙来嘲讽我 说这题SAM水题,而且SA过不了 然后我就用SA过了 显然是一个Height数组上长为k的滑块,判一下两边,差分一下就可以了 #include"cstdio ...

  8. 【题解】Luogu P5337 [TJOI2019]甲苯先生的字符串

    原题传送门 我们设计一个\(26*26\)的矩阵\(A\)表示\(a~z\)和\(a~z\)是否能够相邻,这个矩阵珂以由\(s1\)得出.答案显然是矩阵\(A^{len_{s2}-1}\)的所有元素之 ...

  9. 【题解】Luogu P5338 [TJOI2019]甲苯先生的滚榜

    原题传送门 这题明显可以平衡树直接大力整,所以我要说一下线段树+树状数组的做法 实际线段树+树状数组的做法也很暴力 我们先用树状数组维护每个ac数量有多少个队伍.这样就能快速求出有多少队伍ac数比现在 ...

随机推荐

  1. DISCO Presents Discovery Channel Code Contest 2020 Qual题解

    传送门 \(A\) 咕咕 int x,y; int c[4]={0,300000,200000,100000}; int res; int main(){ cin>>x>>y; ...

  2. python自动化测试学习目录

    一.python学习目录 <1> ----python驱动 [python驱动]python进行selenium测试时GeckoDriver放在什么地方? python下浏览器静默运行驱动 ...

  3. Linux系统压缩命令汇总

    01-.tar格式解包:[*******]$ tar xvf FileName.tar打包:[*******]$ tar cvf FileName.tar DirName(注:tar是打包,不是压缩! ...

  4. R 指定安装镜像的方法

    方法一 options(repos=structure(c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))) install ...

  5. Excel 截取字符,判断县区 城市。

    https://jingyan.baidu.com/article/624e7459aa90e434e8ba5a8a.html https://jingyan.baidu.com/article/9f ...

  6. Spring Boot集成Mybatis注解相关

    mybatis3开始支持java注解,使用java注解可以替代xml配置文件,简化代码.下面来看一下怎么在spring boot中使用mybatis注解. 1 使用mybatis注解需要的配置.如下面 ...

  7. ChannelEventRunnable handle RECEIVED operation error, channel is NettyChannel解决方法

    [] 2019-11-23 16:17:40 [3673645] [c.a.d.r.t.d.ChannelEventRunnable]-[WARN] DubboServerHandler-10.20. ...

  8. sklearn的基本使用

    https://cloud.tencent.com/developer/news/58202 简介 今天为大家介绍的是scikit-learn.sklearn是一个Python第三方提供的非常强力的机 ...

  9. Python3基础 from...import...as 解决局部导入时的函数名重复问题

             Python : 3.7.3          OS : Ubuntu 18.04.2 LTS         IDE : pycharm-community-2019.1.3    ...

  10. Heartbeat took longer than "00:00:01" at "09/06/2019 05:08:08 +00:00".

    .netcore在k8s+docker+linux,部署后,偶尔会报这样的警告 Warn:Microsoft.AspNetCore.Server.KestrelHeartbeat took longe ...