最小瓶颈路 加强版

重构树

最小生成树在合并 (x, y) 时,新建节点 z,link(x, z), link(y, z), 新建节点的权值为 w_{x,y}, 这样的

话任意两点的 answer 为新树上两点 lca 的权值,由于询问次数非常多,显然不可以 logn 求 lca。这里利用

RMQ 求 lca,预处理后时间复杂度 O(1)

#include <bits/stdc++.h>

const int N = 7e4 + 10, M = 1e5 + 10, Mod = 1e9 + 7;

int n, m;
struct Node {
int u, v, w;
bool operator < (const Node a) const {return w < a.w;}
} E[M];
int A, B, C, P; inline int Rand() {A = (A * B + C) % P; return A;} int fa[N << 1];
int Get(int x) {return x == fa[x] ? x : fa[x] = Get(fa[x]);} std:: vector <int> Vec[N << 1];
int tot_point;
int Val[N << 1]; void Rebuild() {
tot_point = n;
for(int i = 1; i <= (n << 1); i ++) fa[i] = i;
for(int i = 1; i <= m && tot_point != n + n - 1; i ++) {
int fau = Get(E[i].u), fav = Get(E[i].v);
if(fau != fav) {
tot_point ++;
fa[fau] = fa[fav] = tot_point;
Vec[tot_point].push_back(fau);
Vec[tot_point].push_back(fav);
Val[tot_point] = E[i].w;
}
}
} int deep[N << 1], In[N << 1], Id[N << 2];
int Tr; void Dfs(int u, int dep) {
deep[u] = dep, In[u] = ++ Tr; Id[Tr] = u;
int S = Vec[u].size();
for(int i = 0; i < S; i ++) Dfs(Vec[u][i], dep + 1), Id[++ Tr] = u;
} int f[N << 2][30], Pow[30], Log[N << 2]; #define T Tr
void Make_st() {
for(int i = 0; (Pow[i] = (1 << i)) <= T; i ++);
Log[1] = 0;
for(int i = 2; i <= T; i ++) Log[i] = Log[i >> 1] + 1;
for(int i = 1; i <= T; i ++) f[i][0] = Id[i];
for(int i = 1; Pow[i] <= T; i ++)
for(int j = 1, ti = T - Pow[i] + 1; j <= ti; j ++)
f[j][i] = (deep[f[j][i - 1]] < deep[f[j + Pow[i - 1]][i - 1]] ? f[j][i - 1] : f[j + Pow[i - 1]][i - 1]);
} int main() {
std:: cin >> n >> m;
for(int i = 1; i <= m; i ++) {
int u, v, w; std:: cin >> u >> v >> w;
E[i] = (Node) {u, v, w};
}
std:: sort(E + 1, E + m + 1);
Rebuild();
Dfs(tot_point, 1);
Make_st();
int Q; std:: cin >> Q;
std:: cin >> A >> B >> C >> P;
int Ans = 0;
for(; Q; Q --) {
int _1 = Rand() % n + 1, _2 = Rand() % n + 1;
int u = In[_1], v = In[_2];
if(u == v) continue;
if(u > v) std:: swap(u, v);
int t;
int ID = f[u][t = Log[v - u + 1]];
if(deep[ID] > deep[f[v - Pow[t] + 1][t]]) ID = f[v - Pow[t] + 1][t];
if((Ans += Val[ID]) >= Mod) Ans -= Mod;
}
std:: cout << Ans;
return 0;
}

loj #137 and #6021的更多相关文章

  1. LOJ#137. 最小瓶颈路 加强版(Kruskal重构树 rmq求LCA)

    题意 三倍经验哇咔咔 #137. 最小瓶颈路 加强版 #6021. 「from CommonAnts」寻找 LCR #136. 最小瓶颈路 Sol 首先可以证明,两点之间边权最大值最小的路径一定是在最 ...

  2. loj#137 最小瓶颈路 加强版

    分析 我们知道答案一定再最小生成树上 于是我们按边权从小到大建立kruskal重构树 然后每次查询lca的值即可 由于询问较多采用st表维护lca 代码 格式化代码 #include<bits/ ...

  3. LOJ题解#136. 最小瓶颈路 DFS+Kruskal

    题目链接: https://loj.ac/problem/136 思路: 在我的这篇博客中已经讲到什么是最短瓶颈路,同时给出了一个用Kruskal求最短瓶颈路的一个简洁易懂的方法,然而这道题目可以看作 ...

  4. leetcode 137

    137. Single Number II Given an array of integers, every element appears three times except for one. ...

  5. TCP和UDP的135、137、138、139、445端口的作用

    如果全是2000以上的系统,可以关闭137.138.139,只保留445 如果有xp系统,可能以上四个端口全部要打开 无论你的服务器中安装的是Windows 2000 Server,还是Windows ...

  6. [Swust OJ 137]--波浪数(hash+波浪数构造)

    题目链接:http://acm.swust.edu.cn/problem/137/ Time limit(ms): 1000 Memory limit(kb): 65535   Description ...

  7. Leetcode 136 137 260 SingleNumber I II III

    Leetccode 136 SingleNumber I Given an array of integers, every element appears twice except for one. ...

  8. Apache2.4 137行 httpd-ahssl.conf

    C:\Users\Administrator>E:\PHP\Apache24\bin\httpd.exe -w -n "apache2.4" -k startAH00526: ...

  9. 预防onion比特币勒索病毒,如何快速关闭135,137,138,139,445端口

    预防onion比特币勒索病毒,如何快速关闭135,137,138,139,445等端口   如果这种网络端口关闭方法行不通,可以尝试一种新的关闭网络端口方法(比较繁琐)见106楼,补丁安装教程见126 ...

随机推荐

  1. BZOJ5104 Fib数列 二次剩余、BSGS

    传送门 发现只有通项公式可以解决考虑通项公式 \(F_n = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^ ...

  2. THUPC&CTS&APIO2019:Far Away

    流水账~ THUPC nmdwsmduliu! THUPC Day -INF~Day -2 大概就是自己做题和每周两次的考试,lsy和fcw两个外校的来吊打我们qwqqq THUPC Day -1 Z ...

  3. 【洛谷 P5017】 摆渡车(斜率优化)

    题目链接 算是巩固了一下斜率优化吧. 设\(f[i]\)表示前\(i\)分钟最少等待时间. 则有\(f[i]=\min_{j=0}^{i-m}f[j]+(cnt[i]-cnt[j])*i-(sum[i ...

  4. cgal的安装、编译

    1.下载地址 https://www.cgal.org/2019/03/29/cgal414/ https://github.com/CGAL/cgal/releases/tag/releases%2 ...

  5. python进程不能并行的原因,进程阻塞

    上图红色框的写法进程会阻塞,并不能实现多进程.这种写法不需要调用start方法也会执行. 注意:正常写法是上图红框下面的代码,即可实现多进程.

  6. LAMP环境搭建之编译安装指南(php-5.3.27.tar.gz)

    测试环境:CentOS release 6.5 (Final) 软件安装:httpd-2.2.27.tar.gz   mysql-5.1.72.tar.gz   php-5.3.27.tar.gz 1 ...

  7. Redis持久化从rdb切换到aof

    要求:不重启redis的情况下,将RDB数据切换到AOF数据中 准备,配置文件已支持RDB持久化 port 6379 daemonize yes pidfile /data/6379/redis.pi ...

  8. 1.1“Linux操作系统”部署

    ---恢复内容开始--- 1.2.1 版本说明 操作系统版本:CentOS6.5 64位 1.2.2 部署条件说明 无 1.2.3 部署步骤说明 centos6.5 操作系统安装 1.创建虚拟机 2. ...

  9. 使用Kerberos进行Hadoop认证

    使用Kerberos进行Hadoop认证 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. Kerberos是一种网络身份验证协议.它旨在通过使用秘密密钥加密为客户端/服务器应用程序提 ...

  10. SpringCloud2.0 Turbine 断路器集群监控 基础教程(九)

    1.启动基础工程 1.1.启动[服务中心]集群,工程名称:springcloud-eureka-server 参考 SpringCloud2.0 Eureka Server 服务中心 基础教程(二) ...