洛谷 P1082 同余方程 题解
每日一题 day31 打卡
Analysis
题目问的是满足 ax mod b = 1 的最小正整数 x。(a,b是正整数)
但是不能暴力枚举 x,会超时。
把问题转化一下。观察 ax mod b = 1,它的实质是 ax + by = 1:这里 y 是我们新引入的某个整数,并且似乎是个负数才对。这样表示是为了用扩展欧几里得算法。我们将要努力求出一组 x,y 来满足这个等式。稍微再等一下——
问题还需要转化。扩展欧几里得是用来求 ax + by = gcd(a,b) 中的未知数的,怎么牵扯到等于 1 呢?
原理是,方程 ax + by = m 有解的必要条件是 m mod gcd(a,b) = 0
这个简单证一下。
由最大公因数的定义,可知 a 是 gcd(a,b) 的倍数,且 b 是 gcd(a,b) 的倍数,
若 x,y 都是整数,就确定了 ax + by 是 gcd(a,b) 的倍数,
因为 m = ax + by,所以 m 必须是 gcd(a,b) 的倍数,
那么 m mod gcd(a,b) = 0
可得出在这道题中,方程 ax + by = 1 的有解的必要条件是 1 mod gcd(a,b) = 0,可怜的 gcd(a,b) 只能等于 1 了。这实际上就是 a,b 互质。
然后就可以直接套拓欧的板子了.
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
inline int read()
{
int x=;
bool f=;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=;
for(; isdigit(c); c=getchar()) x=(x<<)+(x<<)+c-'';
if(f) return x;
return -x;
}
inline void write(int x)
{
if(x<){putchar('-');x=-x;}
if(x>)write(x/);
putchar(x%+'');
}
int a,b,x,y;
inline void exgcd(int a,int b)
{
if(b==)
{
x=;
y=;
return;
}
exgcd(b,a%b);
int re_x=x;
x=y;
y=re_x-a/b*y;
}
signed main()
{
a=read();b=read();
exgcd(a,b);
x=(x%b+b)%b;
write(x);
return ;
}
请各位大佬斧正(反正我不认识斧正是什么意思)
洛谷 P1082 同余方程 题解的更多相关文章
- 洛谷P1082 同余方程 题解
题目链接:https://www.luogu.com.cn/problem/P1082 题目大意: 求关于 \(x\) 的同余方程 ax≡1(mod b) 的最小正整数解. 告诉你 \(a,b\) 求 ...
- 洛谷——P1082 同余方程
P1082 同余方程 题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输 ...
- 洛谷P1082 同余方程 [2012NOIP提高组D2T1] [2017年6月计划 数论06]
P1082 同余方程 题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输 ...
- [NOIP2012] 提高组 洛谷P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 洛谷P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 洛谷 P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 洛谷 P1082 同余方程 —— exgcd
题目:https://www.luogu.org/problemnew/show/P1082 用 exgcd 即可. 代码如下: #include<iostream> #include&l ...
- 洛谷 P1082 同余方程(同余&&exgcd)
嗯... 题目链接:https://www.luogu.org/problem/P1082 这道题很明显涉及到了同余和exgcd的问题,下面推导一下: 首先证明有解情况: ax + by = m有解的 ...
- 洛谷 P1082 同余方程(exgcd)
题目传送门 解题思路: 因为推导过程过于复杂,懒得写,所以题解传送门 AC代码: #include<iostream> #include<cstdio> using names ...
随机推荐
- C++Primer 5th Chap2 Variables and basic Types
wchar_t,char16_t,char32_t用于拓展字符集 char和signed char并不一样,由编译器决定类型char表现上述两种中的哪一种 一般long的大小和int无二,如果超过in ...
- python 之 Django框架(Django框架简介、视图装饰器、request对象、Response对象)
12.33 Django框架简介: MVC,全名是Model View Controller,是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model).视图(View)和控制器( ...
- 全栈项目|小书架|服务器开发-NodeJS 使用 JWT 实现登录认证
通过这篇 全栈项目|小书架|服务器开发-JWT 详解 文章我们对JWT有了深入的了解,那么接下来介绍JWT如何在项目中使用. 安装 $ npm install jsonwebtoken 生成 Toke ...
- 【转】使用Dockerfile构建镜像并push到私有仓库
环境:OS X 10.10.5 maven 3.3.9 Docker version 1.12.2 docker-machine version 0.8.2 程序示例为http://www.cnblo ...
- C# vb .net实现透视反射效果
在.net中,如何简单快捷地实现Photoshop滤镜组中的透视反射效果呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第 ...
- PHP利用preg_split函数格式化日期
// 2018/2/13 00:26:00.000 function format_date($date, $format='Y-m-d H:i:s') { if(empty($date)) retu ...
- JS中的函数与对象
创建函数的三种方式 1.函数声明 function calSum1(num1, num2) { return num1 + num2; } console.log(calSum1(10, 10)); ...
- idea 控制台允许输入
打开idea配置文件添加 -Deditable.java.test.console=true
- fastjson反序列化漏洞研究(下)
之前的文章显示字符太多 拒绝显示 只好分为两篇了 这样我们只需要找到可以利用的类,构造poc链就好了,这个和以前的java反序列化漏洞类似,先不说.网上最早的poc是使用com.sun.org.ap ...
- JS去除字符串左右两端的空格(转载)
来源:https://www.cnblogs.com/fanyf/p/3785387.html var str=' 测试 '; 一.函数 <script type="t ...