洛谷 P1082 同余方程 题解
每日一题 day31 打卡
Analysis
题目问的是满足 ax mod b = 1 的最小正整数 x。(a,b是正整数)
但是不能暴力枚举 x,会超时。
把问题转化一下。观察 ax mod b = 1,它的实质是 ax + by = 1:这里 y 是我们新引入的某个整数,并且似乎是个负数才对。这样表示是为了用扩展欧几里得算法。我们将要努力求出一组 x,y 来满足这个等式。稍微再等一下——
问题还需要转化。扩展欧几里得是用来求 ax + by = gcd(a,b) 中的未知数的,怎么牵扯到等于 1 呢?
原理是,方程 ax + by = m 有解的必要条件是 m mod gcd(a,b) = 0
这个简单证一下。
由最大公因数的定义,可知 a 是 gcd(a,b) 的倍数,且 b 是 gcd(a,b) 的倍数,
若 x,y 都是整数,就确定了 ax + by 是 gcd(a,b) 的倍数,
因为 m = ax + by,所以 m 必须是 gcd(a,b) 的倍数,
那么 m mod gcd(a,b) = 0
可得出在这道题中,方程 ax + by = 1 的有解的必要条件是 1 mod gcd(a,b) = 0,可怜的 gcd(a,b) 只能等于 1 了。这实际上就是 a,b 互质。
然后就可以直接套拓欧的板子了.
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
inline int read()
{
int x=;
bool f=;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=;
for(; isdigit(c); c=getchar()) x=(x<<)+(x<<)+c-'';
if(f) return x;
return -x;
}
inline void write(int x)
{
if(x<){putchar('-');x=-x;}
if(x>)write(x/);
putchar(x%+'');
}
int a,b,x,y;
inline void exgcd(int a,int b)
{
if(b==)
{
x=;
y=;
return;
}
exgcd(b,a%b);
int re_x=x;
x=y;
y=re_x-a/b*y;
}
signed main()
{
a=read();b=read();
exgcd(a,b);
x=(x%b+b)%b;
write(x);
return ;
}
请各位大佬斧正(反正我不认识斧正是什么意思)
洛谷 P1082 同余方程 题解的更多相关文章
- 洛谷P1082 同余方程 题解
题目链接:https://www.luogu.com.cn/problem/P1082 题目大意: 求关于 \(x\) 的同余方程 ax≡1(mod b) 的最小正整数解. 告诉你 \(a,b\) 求 ...
- 洛谷——P1082 同余方程
P1082 同余方程 题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输 ...
- 洛谷P1082 同余方程 [2012NOIP提高组D2T1] [2017年6月计划 数论06]
P1082 同余方程 题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输 ...
- [NOIP2012] 提高组 洛谷P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 洛谷P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 洛谷 P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 洛谷 P1082 同余方程 —— exgcd
题目:https://www.luogu.org/problemnew/show/P1082 用 exgcd 即可. 代码如下: #include<iostream> #include&l ...
- 洛谷 P1082 同余方程(同余&&exgcd)
嗯... 题目链接:https://www.luogu.org/problem/P1082 这道题很明显涉及到了同余和exgcd的问题,下面推导一下: 首先证明有解情况: ax + by = m有解的 ...
- 洛谷 P1082 同余方程(exgcd)
题目传送门 解题思路: 因为推导过程过于复杂,懒得写,所以题解传送门 AC代码: #include<iostream> #include<cstdio> using names ...
随机推荐
- Django框架深入了解_04(DRF之url控制、解析器、响应器、版本控制、分页)
一.url控制 基本路由写法:最常用 from django.conf.urls import url from django.contrib import admin from app01 impo ...
- Jmeter_自带脚本录制
1.http请求+查看结果树 代理服务器操作步骤 1.创建一个线程组(右键点击“测试计划“---> ”添加“ ---> ”线程组“) 2.创建一个http代理服务器(右键“测试计划”--& ...
- 消息认证码 - MAC (Message Authentication Code)
消息认证包括两个目标 1消息完整性认证: 确保张三发给我的消息是完整的,在传输过程中没有被第三方篡改 2消息的来源认证: 确保这个数据是张三发给我的,而不是李四发给我的 第一个目标通常使用散列函数来达 ...
- 关于 Nginx的相关学习
转自:https://www.cnblogs.com/wcwnina/category/1193394.html Nginx能做什么 ——反向代理 ——负载均衡 ——HTTP服务器(动静分离) ——正 ...
- ToLua Timer机制
从一个Bug说起: 在内部试玩时发现有个任务的玩家跟随Npc逻辑挂了. telnet连接到出问题的设备上, 开始搞事情 这个跟随的逻辑是一个Timer驱动的. 这个Timer在主角创建时就会启动. 一 ...
- javascript原型链[图]
- c#指定长度切割字符串,返回数组
public List<string> subStringByCount(string text, int count) { ;//开始索引 ;//结束索引 double count_va ...
- python 笔记二
17.进程线程 进程间通信方式:管道Pipe:队列Queue:共享内存Value.Array.Manager: 多进程同步:锁Lock.递归锁RLock.Condition(条件变量):事件event ...
- 三步操作gitHub汉化插件安装--谷歌浏览器
如果本文对你有用,请爱心点个赞,提高排名,帮助更多的人.谢谢大家!❤ 如果解决不了,可以在文末进群交流. 一个好用基于chrome的插件,用来汉化gitHub,大致效果图如下: 步骤一: 首先下载谷歌 ...
- Python学习日记(十九) 模块导入
模块导入 当文件夹中有这样一个自定义的command模块 在它的内部写下下列代码: print('这个py文件被调用!') def fuc(): print('这个函数被调用!') 然后我们在comm ...