洛谷 P1082 同余方程 题解
每日一题 day31 打卡
Analysis
题目问的是满足 ax mod b = 1 的最小正整数 x。(a,b是正整数)
但是不能暴力枚举 x,会超时。
把问题转化一下。观察 ax mod b = 1,它的实质是 ax + by = 1:这里 y 是我们新引入的某个整数,并且似乎是个负数才对。这样表示是为了用扩展欧几里得算法。我们将要努力求出一组 x,y 来满足这个等式。稍微再等一下——
问题还需要转化。扩展欧几里得是用来求 ax + by = gcd(a,b) 中的未知数的,怎么牵扯到等于 1 呢?
原理是,方程 ax + by = m 有解的必要条件是 m mod gcd(a,b) = 0
这个简单证一下。
由最大公因数的定义,可知 a 是 gcd(a,b) 的倍数,且 b 是 gcd(a,b) 的倍数,
若 x,y 都是整数,就确定了 ax + by 是 gcd(a,b) 的倍数,
因为 m = ax + by,所以 m 必须是 gcd(a,b) 的倍数,
那么 m mod gcd(a,b) = 0
可得出在这道题中,方程 ax + by = 1 的有解的必要条件是 1 mod gcd(a,b) = 0,可怜的 gcd(a,b) 只能等于 1 了。这实际上就是 a,b 互质。
然后就可以直接套拓欧的板子了.
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
inline int read()
{
int x=;
bool f=;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=;
for(; isdigit(c); c=getchar()) x=(x<<)+(x<<)+c-'';
if(f) return x;
return -x;
}
inline void write(int x)
{
if(x<){putchar('-');x=-x;}
if(x>)write(x/);
putchar(x%+'');
}
int a,b,x,y;
inline void exgcd(int a,int b)
{
if(b==)
{
x=;
y=;
return;
}
exgcd(b,a%b);
int re_x=x;
x=y;
y=re_x-a/b*y;
}
signed main()
{
a=read();b=read();
exgcd(a,b);
x=(x%b+b)%b;
write(x);
return ;
}
请各位大佬斧正(反正我不认识斧正是什么意思)
洛谷 P1082 同余方程 题解的更多相关文章
- 洛谷P1082 同余方程 题解
题目链接:https://www.luogu.com.cn/problem/P1082 题目大意: 求关于 \(x\) 的同余方程 ax≡1(mod b) 的最小正整数解. 告诉你 \(a,b\) 求 ...
- 洛谷——P1082 同余方程
P1082 同余方程 题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输 ...
- 洛谷P1082 同余方程 [2012NOIP提高组D2T1] [2017年6月计划 数论06]
P1082 同余方程 题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输 ...
- [NOIP2012] 提高组 洛谷P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 洛谷P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 洛谷 P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 洛谷 P1082 同余方程 —— exgcd
题目:https://www.luogu.org/problemnew/show/P1082 用 exgcd 即可. 代码如下: #include<iostream> #include&l ...
- 洛谷 P1082 同余方程(同余&&exgcd)
嗯... 题目链接:https://www.luogu.org/problem/P1082 这道题很明显涉及到了同余和exgcd的问题,下面推导一下: 首先证明有解情况: ax + by = m有解的 ...
- 洛谷 P1082 同余方程(exgcd)
题目传送门 解题思路: 因为推导过程过于复杂,懒得写,所以题解传送门 AC代码: #include<iostream> #include<cstdio> using names ...
随机推荐
- ubuntu 使用新添加的用户登录只有$解决方法
在ubuntu中,使用useradd新建的用户,默认使用的shell是dash,导致界面不美观,操作也不舒服. 情况如下: 只有美元符,不显示用户,很多乱码,且文件没有颜色. 解决方法,将该用户使用的 ...
- Makefile 介绍
makefile:是告诉编译器(交叉工具链)如何去编译.链接一个工程的规则. 一.概述 什 么是makefile?或许很多Winodws的程序员都不知道这个东西,因为那些Windows的IDE都为 ...
- 【LEETCODE】39、第561题 Array Partition I
package y2019.Algorithm.array; /** * @ProjectName: cutter-point * @Package: y2019.Algorithm.array * ...
- [洛谷P5329][SNOI2019]字符串
题目大意:给一个长度为$n$的字符串$s$,字符串$p_i$为字符串$s$去掉第$i$个字符后形成的字符串.请给所有字符串$p_i$排序(相同字符串按编号排序) 题解:先去掉所有连续相同字符,因为它们 ...
- SQL Server 索引优化 ——索引缺失
本文我们将重点给出动态视图法发现数据库中缺失的索引.对于索引的调整和新建将不在本文阐述范围,后续将陆续分享相关经验. sys.dm_db_missing_index_details 缺失索引明细,包括 ...
- JavaScript中匿名函数this指向问题
this对象是在运行时基于函数执行环境绑定的,在全局函数中,this=window,在函数被作为某个对象的方法调用时,this等于这个对象. 但是匿名函数的执行环境是全局性的,所以匿名函数的this指 ...
- Java 之 方法引用
方法引用 一.冗余的Lambda场景 来看一个简单的函数式接口以应用Lambda表达式: @FunctionalInterface public interface Printable { void ...
- mkimage命令
# mkimage Usage: mkimage -l image -l ==> list image header information mkimage [-x] -A arch -O os ...
- WPF如何设置启动窗口
在做系统时,我们想在启动时显示自己想显示的界面,和Winform不同的是它有两种方法 1.在App.xaml中 <Application x:Class="WpfApp1.App&qu ...
- Kubernetes 1.15部署日记-使用kubeadm--<1-2-3-4>
2019年9月17日 由于此次日记篇幅较长blog限制直接使用word发布所以分成几篇来发. 1.环境准备 10.110.149.172|192.168.111.51 K8s-1 Centos7.5 ...