Kafka 中有这样一个概念消费者组,所有我们去订阅 topic 和 topic 交互的一些操作我们都是通过消费者组去交互的。

在 consumer 端设置了消费者的名字之后,该客户端可以对多个 topic 进行订阅。我们也可以通过 group-id 来识别是谁在消费消息,或者在消费哪些组的消息。

发挥 consumer 最大的效果就是和 broker 的 topic 下的 partitions 数相等。

做到一个 parititons 分配一个独立的 consumer 去消费能达到最高效果,比如我们给一个 topic 分配 20 个 partitions 高峰期间最好我们就有 20个 consumer 在消费它们。你说我们要是分配 25个可以吗?也可以,但是会有 5个 consumer 在空闲。

这里还有一个需要注意的地方,如果我们使用消费者组订阅了多个 topic ,那么我们消费者组需要的消费者数量是所有 topic partitions 之合才能达到满载效果这个需要特别注意。

老版本的 consumer 把 offset 存储在 zk 上,但是后来发现在大规模部署的生产环境中,这样做会让 zk 随着 kafka 集群规模的增长而线性增长。所以后面新版本的 consumer 是把 offset 存储在 自己集群的 topic 的 __consumer_offsets 位移主题中。

下面我们来详细聊下新版 offset 存储以及 __consumer_offsets 的用途。新版本的位移管理机制就是将位移数据一条条提交到 __consumer_offsets 中。

常规位移消息的格式包含三部分<group_id, topic_name, partition_no> 用于说明自己是来自哪个消费组,消费 topic 名称和所消费的 partition 号。

另外还有两种消息:

1. 用于注册新的 consumer group 的消息。

2. 用于删除过期 group 位移或者删除 group 的消息。一旦某个 consumer group 下的所有 consumer 实例都停止了,而且它们的位移数据都已经被删除的时候, kafka 会向位移主题的对应分区写入 tombstone 消息,墓碑消息表明要彻底删除这个 group 的信息。

默认情况下 kafka __consumer_offsets 会在第一个 consumer 创建的时候自动创建,默认是 50 个 partitions 。

consumer 端有参数来控制是否自动提交位移,并且多久提交一次位移:

enable.auto.commit = True # 默认为 True
auto.commit.interval.ms = # 默认 5s python 多线程会为其提交一次位移

位移的数据会提交得越来越多,就需要整理。

Kafka 使用 Compact 来整理过期的消息。Compact 策略会用于来删除位移主题中的过期消息,避免消息的无限膨胀。

这里有一张来自官网的图片来描述 compact 算法究竟在做什么

上面我们说了 key 是大概是由 <group_id, topic_name, partition_no> 谁在哪个主题哪个分区 的消费位置,那么这个消费位置会一直更新,因为我们一直在消费,所以属于这个 group_id 的每个 partitions 的消息位置会一直变化。也就是 value 会一直被更新那么 compact 算法就能基于相同的 key 对前面老旧的消息进行清理。想了解其详细算法可以参考 reference 对 log compaction 的源码解析。

Kafka 提供专门的后台线程定期巡检待 Compact 的主题,我们可以通过查看 kafka 日志 log-cleaner.log 获得一些信息

[-- ::,] INFO Cleaner : Beginning cleaning of log __consumer_offsets-. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Building offset map for __consumer_offsets-... (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Building offset map for log __consumer_offsets- for segments in offset range [, ). (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Offset map for log __consumer_offsets- complete. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning log __consumer_offsets- (cleaning prior to Mon Jul :: CST , discarding tombstones prior to Sat Jul :: CST )... (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning segment in log __consumer_offsets- (largest timestamp Fri May :: CST ) into , retaining deletes. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning segment in log __consumer_offsets- (largest timestamp Sun Jul :: CST ) into , retaining deletes. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Swapping in cleaned segment for segment(s) , in log __consumer_offsets-. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning segment in log __consumer_offsets- (largest timestamp Mon Jul :: CST ) into , retaining deletes. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Swapping in cleaned segment for segment(s) in log __consumer_offsets-. (kafka.log.LogCleaner)
[-- ::,] INFO [kafka-log-cleaner-thread-]:
Log cleaner thread cleaned log __consumer_offsets- (dirty section = [, ])
100.0 MB of log processed in 3.4 seconds (29.3 MB/sec).
Indexed 100.0 MB in 2.8 seconds (35.4 Mb/sec, 82.8% of total time)
Buffer utilization: 0.0%
Cleaned 100.0 MB in 0.6 seconds (170.4 Mb/sec, 17.2% of total time)
Start size: 100.0 MB (,, messages)
End size: 0.0 MB ( messages)
100.0% size reduction (100.0% fewer messages)
(kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Beginning cleaning of log __consumer_offsets-. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Building offset map for __consumer_offsets-... (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Building offset map for log __consumer_offsets- for segments in offset range [, ). (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Offset map for log __consumer_offsets- complete. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning log __consumer_offsets- (cleaning prior to Mon Jul :: CST , discarding tombstones prior to Sun Jul :: CST )... (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning segment in log __consumer_offsets- (largest timestamp Mon Jul :: CST ) into , retaining deletes. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning segment in log __consumer_offsets- (largest timestamp Mon Jul :: CST ) into , retaining deletes. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Swapping in cleaned segment for segment(s) , in log __consumer_offsets-. (kafka.log.LogCleaner)
[-- ::,] INFO [kafka-log-cleaner-thread-]:
Log cleaner thread cleaned log __consumer_offsets- (dirty section = [, ])
1.8 MB of log processed in 0.2 seconds (11.5 MB/sec).
Indexed 1.8 MB in 0.1 seconds (13.3 Mb/sec, 86.5% of total time)
Buffer utilization: 0.0%
Cleaned 1.8 MB in 0.0 seconds (84.8 Mb/sec, 13.5% of total time)
Start size: 1.8 MB (, messages)
End size: 0.0 MB ( messages)
99.9% size reduction (99.8% fewer messages)
(kafka.log.LogCleaner)

下一篇会来重点谈一谈 rebalance 的问题,和手动提交 offset python 版本的实操。

Reference:

https://time.geekbang.org/column/article/105112 geektime 专栏 kafka 核心技术与实战-15 消费者组到底是什么

https://time.geekbang.org/column/article/105473 geektime 专栏 kafka 核心技术与实战-16 揭开神秘的“位移主题”面纱

https://time.geekbang.org/column/article/105473 geektime 专栏 kafka 核心技术与实战-17 消费者组重平衡能避免吗

https://github.com/dpkp/kafka-python/issues/948  KIP-62 / KAFKA-3888: Allow consumer to send heartbeats from a background thread

https://github.com/dpkp/kafka-python/pull/1266/files  KAFKA-3888 Use background thread to process consumer heartbeats

https://segmentfault.com/a/1190000007922290  Kafka Log Compaction 解析

Kafka 消费者到底是什么 以及消费者位移主题到底是什么(Python 客户端 1.01 broker)的更多相关文章

  1. 我们使用 Kafka 生产者在发消息的时候我们关注什么(Python 客户端 1.01 broker)

    之前使用 Kafka 的客户端消费者比较多一点,而且也是无脑订阅使用也没有深入了解过具体的参数.总的来说使用不够细节. 这次公司项目活动期间暴露非常多的问题,于是有了这篇文章. 首先我们来拆解一下 K ...

  2. kafka Poll轮询机制与消费者组的重平衡分区策略剖析

    注意本文采用最新版本进行Kafka的内核原理剖析,新版本每一个Consumer通过独立的线程,来管理多个Socket连接,即同时与多个broker通信实现消息的并行读取.这就是新版的技术革新.类似于L ...

  3. kafka 消费组功能验证以及消费者数据重复数据丢失问题说明 3

    原创声明:作者:Arnold.zhao 博客园地址:https://www.cnblogs.com/zh94 背景 上一篇文章记录了kafka的副本机制和容错功能的说明,本篇则主要在上一篇文章的基础上 ...

  4. Hadoop生态圈-Kafka的新API实现生产者-消费者

         Hadoop生态圈-Kafka的新API实现生产者-消费者 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

  5. Hadoop生态圈-Kafka的旧API实现生产者-消费者

    Hadoop生态圈-Kafka的旧API实现生产者-消费者 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.旧API实现生产者-消费者 1>.开启kafka集群 [yinz ...

  6. 深入了解Kafka【五】Partition和消费者的关系

    1.消费者与Partition 以下来自<kafak权威指南>第4章. 假设主题T1有四个分区. 1.1.一个消费者组 1.1.1.消费者数量小于分区数量 只有一个消费者时,消费者1将收到 ...

  7. Kafka 幂等生产者和事务生产者特性(讨论基于 kafka-python | confluent-kafka 客户端)

    Kafka 提供了一个消息交付可靠性保障以及精确处理一次语义的实现.通常来说消息队列都提供多种消息语义保证 最多一次 (at most once): 消息可能会丢失,但绝不会被重复发送. 至少一次 ( ...

  8. 053 kafka自带的生产者与消费者测试

    1.命令 2.启动生产者 bin/kafka-console-producer.sh --topic beifeng --broker-list linux-hadoop01.ibeifeng.com ...

  9. Kafka之--python-kafka测试kafka集群的生产者与消费者

    前面两篇博客已经完成了Kafka的搭建,今天再来点稍高难度的帖子. 测试一下kafka的消息消费行为.虽然,kafka有测试的shell脚本可以直接测试,但既然我最近在玩python,那还是用pyth ...

随机推荐

  1. 浅谈分词算法基于字的分词方法(HMM)

    前言 在浅谈分词算法(1)分词中的基本问题我们讨论过基于词典的分词和基于字的分词两大类,在浅谈分词算法(2)基于词典的分词方法文中我们利用n-gram实现了基于词典的分词方法.在(1)中,我们也讨论了 ...

  2. Javascript处理数组的方法

    一 迭代方法 ES5为数组定义了5个迭代方法,这些方法大大方便了处理数组的任务,支持这些方法的浏览器有 IE9+,Firefox2+,Safari3+,Opera9.5+和Chrome. 1 ever ...

  3. GO执行shell命令

    Golang执行shell命令主要依靠exec模块 代码为核心逻辑,并非全部 运行命令 cmd1 = exec.Command("ls") if err = cmd1.Run(); ...

  4. TF-IDF词频逆文档频率算法

    一.简介 1.RF-IDF[term frequency-inverse document frequency]是一种用于检索与探究的常用加权技术. 2.TF-IDF是一种统计方法,用于评估一个词对于 ...

  5. android studio中为gradle指定cmake版本

    Android Studio相当于是Intellij基础上写了一个AS插件,这个插件使用gradle作为构建系统,因此构建出现问题先考虑gradle的文档. gradle可以使用native buil ...

  6. 树莓派配置samba服务器,实现linux、windows文件共享

    一.安装samba服务器 输入如下命令: 二.配置文件smb.conf 找到[homes],将read only那里的yes改为no,允许读写 添加用户和设置密码 sudo smbpasswd -a ...

  7. 有意义的单词分割——经典dfs题目

    680. 分割字符串 中文 English 给一个字符串,你可以选择在一个字符或两个相邻字符之后拆分字符串,使字符串由仅一个字符或两个字符组成,输出所有可能的结果 样例 样例1 输入: "1 ...

  8. jpa之No property buyerOpenId found for type OrderMaster! Did you mean 'buyerOpenid'?

    java.lang.IllegalStateException: Failed to load ApplicationContext at org.springframework.test.conte ...

  9. Python idle中lxml 解析HTML时中文乱码解决

    例: <html><p>中文</p></html> 读取代码: 代码HTML需要进行decode('utf-8') 编译: p=etree.HTML(u ...

  10. 我理解的Linux内存管理

    众所周知,内存管理是Linux内核中最基础,也是相当重要的部分.理解相关原理,不管是对内存的理解,还是对大家写用户态代码都很有帮助.很多书上.很多文章都写了相关内容,但个人总觉得内容太复杂,不是太容易 ...