划分土地(how many pieces of land)
题目描述:
给一个椭圆,上面有n个点,两两连接这n个点,得到的线段能把椭圆分为几个区域?
思路:
首先想想,n个点在椭圆边缘,每两个点两两连接有\(C^2_n\)条线段,这些线段交于很多点,求这些线段最多把椭圆分成几个部分。
考虑到欧拉公式:在平面图中\(V-E+F=2\),\(V\)为顶点数,\(E\)是边数,\(F\)是面数。我们要求的是\(F\),只要求\(E\)与\(V\)就行了。那么怎么求\(V\)呢?
考虑每一个顶点,以这个顶点为基础,不断向其他点发出对角线,在对角线左边的点是\(i\),右边的便是\(n-2-i\)个点,将左边的点与右边的点相互连接,便会与这条对角线相交,交点有\(i(n-2-i)\)个,但是由于对每个点都枚举,这样会重复计算。重复计算了几次呢?我们知道,要产生一个交点需要两条线段,也就需要四个顶点,也就是说,遍历所有顶点后,对这一个交点事实上我们重复了四次,因为有四个顶点贡献了它。同理,边重复计算了两次。因此:\(V=n+\frac{n}{4}\sum_{i=0}^{n-2}i(n-2-i)\),\(E=n+\frac{n}{2}\sum_{i=0}^{n-2}(i(n-2-i)+1)\)。
所以椭圆内的面有$F=E-V+2-1=\frac{n}{4}\sum_{i=0}^{n-2}i(n-2-i)+\frac{n(n-1)}{2}+1=\frac{n(n-3)(n-2)(n-1)}{24}+\frac{n(n-1)}{2}+1 $。
由于\(\sum_{i=1}^n i(n+1-i)=\frac{n(n+1)(n+2)}{6}\)
证明:
\(n=1\)时公式成立,假设n=k时也成立
\(a_k=1*k+2*(k-1)+...+k*1\)
\(n=k+1\)时,
\(a_{k+1}=1*(k+1)+2*k+...+(k+1)*1\)
\(a_{k+1}-a{k}=1+2+...+k+1=\frac{(k+2)(k+1)}{2}\),\(a_{k+1}=a_k+\frac{(k+2)(k+1)}{2}=\frac{n(n+1)(n+2)}{6}+\frac{(k+2)(k+1)}{2}=\frac{(k+1)(k+2)(k+3)}{6}\).
证毕
注意如果找规律,1,2,4,8,16当n等于6时为31就不对了。
顺便说一下:
n个顶点形成的图要边数最大,就要形成完全图,完全图的边数为\(\frac{n(n-1)}{2}\)
参考文章:
weijifen000,UVa10213 多少块土地,https://blog.csdn.net/weijifen000/article/details/82709741
划分土地(how many pieces of land)的更多相关文章
- UVa 10213 (欧拉公式+Java大数) How Many Pieces of Land ?
题意: 一块圆形土地,在圆周上选n个点,然后两两连线,问把这块土地分成多少块? 分析: 首先紫书上的公式是错的,不过根据书上提供的思路很容易稍加修改得到正确答案! 然后推公式吧,这里用到平面图的欧拉公 ...
- UVA - 10213 How Many Pieces of Land?(欧拉公式 + 高精度)
圆上有n个点,位置不确定.问这些点两两连接成的线段,最多可以把圆划分成多少块平面? 欧拉公式:V-E+F = 2,V是点数,E是边数,F是面数. 答案是F=C(n,4)+C(n,2)+1,看的别人推的 ...
- UVa 10213 How Many Pieces of Land ? (计算几何+大数)欧拉定理
题意:一块圆形土地,在圆周上选n个点,然后两两连线,问把这块土地分成多少块? 析:这个题用的是欧拉公式,在平面图中,V-E+F=2,其中V是顶点数,E是边数,F是面数.对于这个题只要计算V和E就好. ...
- UVa 10213 How Many Pieces of Land ? (计算几何+大数)
题意:一块圆形土地,在圆周上选n个点,然后两两连线,问把这块土地分成多少块? 析:这个题用的是欧拉公式,在平面图中,V-E+F=2,其中V是顶点数,E是边数,F是面数.对于这个题只要计算V和E就好. ...
- 【笔记篇】斜率优化dp(五) USACO08MAR土地购(征)买(用)Land Acquisition
好好的题目连个名字都不统一.. 看到这种最大最小的就先排个序嘛= =以x为第一关键字, y为第二关键字排序. 然后有一些\(x_i<=x_{i+1},且y_i<=y_{i+1}\)的土地就 ...
- 【分割圆】Uva 10213 - How Many Pieces of Land ?
一个椭圆上有N个点,将这n个点两两相连,问最多能将这个椭圆分成多少片. 理清思路,慢慢推. 首先我们要想到欧拉公式:V+E-F=2 其中V为图上的顶点数,E为边数,F为平面数. 计算时的可以枚举点,从 ...
- UVa 10213 - How Many Pieces of Land ?(欧拉公式)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- (Step1-500题)UVaOJ+算法竞赛入门经典+挑战编程+USACO
http://www.cnblogs.com/sxiszero/p/3618737.html 下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年 ...
- ACM训练计划step 1 [非原创]
(Step1-500题)UVaOJ+算法竞赛入门经典+挑战编程+USACO 下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年到1年半年时间完成 ...
随机推荐
- Spring Shell入门介绍
目录 Spring Shell是什么 入门实践 基础配置 简单示例 注解@ShellMethod 注解@ShellOption 自定义参数名称 设置参数默认值 为一个参数传递多个值 对布尔参数的特殊处 ...
- Difference between LinkedList vs ArrayList in Java
source-url LinkedList implements it with a doubly-linked list. ArrayList implements it with a dynami ...
- [Go] 环境变量,模块化与基础语法
[环境变量] 安装完 go 之后,设置必要环境变量: export GOPATH=/home/wc/go-lab export GO111MODULE=on export GOPROXY=https: ...
- Gerrit - 一些基本用法
1 - 主配置文件 主配置文件位于$GERRIT_SITE/etc/gerrit.config目录 [gerrit@mt101 ~]$ cat gerrit_testsite/etc/gerrit.c ...
- windows系统转linux系统后磁盘的处理
背景: 原服务器是windows操作系统的.在没有进行格式化的情况下,重新安装了linux系统.比如centos7后,磁盘该怎么格式化?以下是演示过程. 1. 查看磁盘情况: # fdisk -l 2 ...
- Go语言(环境的搭建)
一步一步,从零搭建Go语言开发环境. 安装Go语言及搭建Go语言开发环境 下载 下载地址 Go官网下载地址:https://golang.org/dl/ Go官方镜像站(推荐):https://gol ...
- SQLserver将查询的字段中的数据 拼接成字符串用逗号隔开
,,'') 将查询的字段中的数据 拼接成字符串用逗号隔开
- swift版 二分查找 (折半查找)
二分查找作为一种常见的查找方法,将原本是线性时间提升到了对数时间范围之内,大大缩短了搜索时间,但它有一个前提,就是必须在有序数据中进行查找.废话少说,直接上代码,可复制粘贴直接出结果! import ...
- yii框架无限极分类的做法
用yii框架做了一个无限极分类,主要的数组转换都是粘贴的别人的代码,但还是不要脸的写出来,方便以后自己看 用的是递归,不是path路径 控制器: protected function subtree( ...
- Java 中文转换拼音工具
Java 中文转换拼音工具 /** * <html> * <body> * <P> Copyright 1994 JsonInternational</p&g ...