P2602 [ZJOI2010]数字计数(递推)
P2602 [ZJOI2010]数字计数
思路:
首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的。所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数。
那么就有递推方程:\(f(i)=f(i-1)*10+10^{i-1}\)。
假设现在要求的数为\(x\)位,那么我们依次从\(x\)位往下面求就行了。假设第\(x\)位的数字为\(k\),那么我们枚举第一位从\(0\)到\(k\),每一个数字的出现次数加上\(f(i-1)*k+10^{i-1}\),同时\(k\)这个数还会有多出现的情况,计算一下就行了。就这样一位一位来算就ok了。
因为我们之前没有考虑前导0的情况,所以我们减去多算上的情况就行了。
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 15;
ll f[N], cnta[N], cntb[N], pow10[N];
ll a, b;
int tot;
ll num[N] ;
void solve(ll x, ll *cnt) {
tot = 0;
ll tmp = x;
while(x) {
num[++tot] = x % 10;
x /= 10;
}
for(int i = tot; i >= 1; i--) {
for(int j = 0; j < 10; j++) cnt[j] += num[i] * f[i - 1] ;
for(int j = 0; j < num[i]; j++) cnt[j] += pow10[i - 1] ;
tmp -= num[i] * pow10[i - 1] ;
cnt[num[i]] += tmp + 1;
cnt[0] -= pow10[i - 1] ;
}
}
int main() {
pow10[0] = 1;
ll t = 0;
for(int i = 1; i < N; i++) {
f[i] = f[i - 1] * 10 + pow10[i - 1] ;
pow10[i] = pow10[i - 1] * 10;
}
cin >> a >> b;
solve(a - 1, cnta) ;
solve(b, cntb) ;
for(int i = 0; i < 10; i++) cout << cntb[i] - cnta[i] << ' ';
return 0;
}
P2602 [ZJOI2010]数字计数(递推)的更多相关文章
- P2602 [ZJOI2010]数字计数&P1239 计数器&P4999 烦人的数学作业
P2602 [ZJOI2010]数字计数 题解 DFS 恶心的数位DP 对于这道题,我们可以一个数字一个数字的求 也就是分别统计区间 [ L , R ] 内部数字 i 出现的次数 (0<=i&l ...
- 数位dp详解&&LG P2602 [ZJOI2010]数字计数
数位dp,适用于解决一类求x~y之间有多少个符合要求的数或者其他. 例题 题目描述 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- P2602 [ZJOI2010]数字计数
https://www.luogu.org/problemnew/show/P2602 数位dp #include <bits/stdc++.h> using namespace std; ...
- Luogu P2602 [ZJOI2010]数字计数
这算是一道数位DP的入门题了吧虽然对于我来说还是有点烦 经典起手式不讲了吧,\(ans(a,b)\to ans(1,b)-ans(1,a-1)\) 我们首先预处理一个东西,用\(f_i\)表示有\(i ...
- 洛谷 P2602 [ZJOI2010]数字计数
洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...
- [洛谷P2602][ZJOI2010]数字计数
题目大意:求区间$[l,r]$中数字$0\sim9$出现个数 题解:数位$DP$ 卡点:无 C++ Code: #include <cstdio> #include <iostrea ...
- Luogu P2602 [ZJOI2010]数字计数 数位DP
很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...
随机推荐
- js:对象之间的复制
1.:复制obj1,不管obj2是否有这个属性,但是ojb2中的特有属性会保留 var obj1={id:1,name:'zhangsan'} var obj2={}; for (var prop i ...
- kubernetes reference
hyperkube在kubernetes pod里面执行kubernetes命令(例如kubectl) https://feisky.gitbooks.io/kubernetes/components ...
- [转] 下载文件旁边附的MD5/SHA256等有什么用途?
在我们下载很多软件时,旁边会出现md5,sha1/sha256/sha512等一长串字符串,这些字符串是什么意义呢? 因为怕盗版或者怕软件被植入病毒或者插件等,要对软件的完整性做校验.步骤:先下载完软 ...
- understanding backpropagation
几个有助于加深对反向传播算法直观理解的网页,包括普通前向神经网络,卷积神经网络以及利用BP对一般性函数求导 A Visual Explanation of the Back Propagation A ...
- 在linux上安装redis
下载Redis安装包 wget http://download.redis.io/releases/redis-3.2.9.tar.gz 解压Redis安装包 tar -zxvf redis-3.2 ...
- 个人Wiki搭建(Gitbook + GitHub Pages)
工具选择:Gitbook + GitHub Pages 大概流程: 首先在本地编写md文件,然后生成对应的html文件,最后将这些html文件推送到github对应的gitbook仓库. 具体步骤: ...
- Spring Security的RBAC数据模型嵌入
1.简介 基于角色的权限访问控制(Role-Based Access Control)作为传统访问控制(自主访问,强制访问)的有前景的代替受到广泛的关注.在RBAC中,权限与角色相关联,用户通过成 ...
- 2019-07-23 static 和 const 关键字的应用
首先先来了解下内存段,内存段共分为四个,栈.堆.代码段.初始化静态段.程序中不同的声明存放在不同的内存段内,栈空间段是存储占用相同空间长度并且占用空间小的数据类型的地方,比如说整型1, 10, 100 ...
- 【转载】C#中Convert.ToSingle方法将字符串转换为Float类型
在C#编程过程中,可以使用Convert.ToSingle方法将字符串或者其他可转换为数字的对象变量转换为float类型,Convert.ToSingle方法有多个重载方法,最常使用的一个方法将字符串 ...
- FreeRTOS软件定时器
API函数 //创建 TimerHandle_t xTimerCreate( const char * const pcTimerName, const TickType_t xTimerPeriod ...