Handling skewed data---Error metrics for skewed(偏斜的) classes(precision&recall)
skewed classes

skewed classes: 一种类里面的数量远远高于(或低于)另一个类,即两个极端的情况。
预测cancer的分类模型,如果在test set上只有1%的分类误差的话,乍一看是一个很好的结果,实际上如果我们将所有的y都预测为0的话(即都不为cancer),分类误差为0.5%(因为cancer的比率为0.5%)。error降低了,那这是对算法的一种改进吗?显然不是的。因为后面一种方法实际上什么也没有做(将所有的y=0),不是一种好的机器学习算法。所以这种error metrics对于skewed classes是不行的,那么我们要寻求一种适用于skewed classes上面的error metrics。
precision(查准率) & recall(召回率)

用测试集来评估一个分类模型: 如上图所示,在实际值与预测值上进行一个2*2的分类(假设这是一个2分类问题),将它们分为真阳性(实际是postive,预测也是postive),假阳性(预测是postive,实际是negative),真阴性(实际是negative,预测也是negative),假阴性(预测也是negative,实际是positive)。
precision(查准率):真阳性(True positive)/预测为positive(阳性的)数量(predicted y=1)= 真阳性/(真阳性+假阳性)
recall(召回率): 真阳性(True positive)/实际为positive(阳性的)的数量 (actually have cancer) = 真阳性/(真阳性+假阴性)
这样当我们用precision与recall来评估上一个例子的算法时(将所有的y都预测为0),这样它的true positive 就为0,这样它的precision与recall就都为0,即能知道这不是一个好的算法,所以我们可以通过precision和recall来评估一个算法是否好。也给了我们一个更直接的方法来评估模型的好坏。
我们经常使用y=1(不是y=0)来做为很少(rare)出现的那个类(如为cancer的类),即做为要检测出来的类。
总结
- 我们使用precision和recall来衡量算法的好坏,这样当我们遇到skewed classes时,即使我们将所有的预测值都设为0或者1时,它不会有高的precison和recall
- 当我们算法的precision和recall很好时,我们可以确信地说我们的算法表现很好(即使我们遇到了skewed classes)
- 当我们遇到skewed classes问题时,我们使用precision和recall比用的误差率或者准确率能更好地来衡量算法的好坏
Handling skewed data---Error metrics for skewed(偏斜的) classes(precision&recall)的更多相关文章
- 斯坦福大学公开课机器学习:machine learning system design | error metrics for skewed classes(偏斜类问题的定义以及针对偏斜类问题的评估度量值:查准率(precision)和召回率(recall))
上篇文章提到了误差分析以及设定误差度量值的重要性.那就是设定某个实数来评估学习算法并衡量它的表现.有了算法的评估和误差度量值,有一件重要的事情要注意,就是使用一个合适的误差度量值,有时会对学习算法造成 ...
- 吴恩达机器学习笔记39-误差分析与类偏斜的误差度量(Error Analysis and Error Metrics for Skewed Classes)
如果你准备研究机器学习的东西,或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统,拥有多么复杂的变量:而是构建一个简单的算法,这样你可以很快地实现它. 构建一个学习算法的推荐方法为:1 ...
- Keras 处理 不平衡的数据的分类问题 imbalance data 或者 highly skewed data
处理不平衡的数据集的时候,可以使用对数据加权来提高数量较小类的被选中的概率,具体方式如下 fit(self, x, y, batch_size=32, nb_epoch=10, verbose=1, ...
- 三维网格精简算法(Quadric Error Metrics)附源码
在计算机图形应用中,为了尽可能真实呈现虚拟物体,往往需要高精度的三维模型.然而,模型的复杂性直接关系到它的计算成本,因此高精度的模型在几何运算时并不是必须的,取而代之的是一个相对简化的三维模型,那么如 ...
- composer 报 zlib_decode(): data error
使用composer 时报 zlib_decode(): data error 错误. 解决办法:执行 composer self-update 即可
- composer 报错:Failed to decode response: zlib_decode(): data error 解决办法
执行命令 composer require particle/validator 报错 Failed to decode response: zlib_decode(): data error 网上推 ...
- Failed to decode response: zlib_decode(): data error
/********************************************************************** * Failed to decode response: ...
- O/S-Error: (OS 23) Data error (cyclic redundancy check)问题处理
RMAN-03002: backup plus archivelog 命令 (在 08/24/2015 03:31:00 上) 失败ORA-19501: 文件 "XXXXXX.DBF&quo ...
- composer爆错:zlib_decode():data error
昨晚用nginx运行Yii的一个开源小项目,结果composer安装依赖一直报错,如下 Failed to decode response: zlib_decode(): data error 如果遇 ...
随机推荐
- Oracle Spatial分区应用研究之二:按县分区与按省分区对比测试报告
1.实验目的 在上一轮的实验中,oracle 11g r2版本下,在87县市实验数据的基础上,比较了分表与分区的效率,得出了分区+全局索引效率较高的结论(见上一篇博客).不过我们尚未比较过不同的分区粒 ...
- Cannot find bounds of current function
MinGW编译平台的应用程序使用libcef.dll,当调用cef的capi接口时程序崩溃.调试单步到cef capi函数时,调试器报错“Cannot find bounds of current f ...
- 生信-使用NCBI进行目的基因的引物设计
使用NCBI进行目的基因的引物设计 全文概述 利用生信工具进行目的基因的引物设计,使用了NCBI进行筛选与设计引物,使用 idtdna对筛选出的DNA进行检查.本文分享了如何筛选出高质量的基因引物,帮 ...
- 10 Spring框架--基于注解和xml的配置的应用案例
1.项目结构 2.基于xml配置的项目 <1>账户的业务层接口及其实现类 IAccountService.java package lucky.service; import lucky. ...
- listWdiget控件
2019-07-15 1.常用方法的功能 listWidget = QListWidget() #实例化一个(item base)的列表 listWidget.addItem('dd') #添加一个项 ...
- golang 执行命令行(二)--修改进程启动用户
继续上文所述,有时候我们需要设置进程的启动用户,操作与设置进程组的方式类似,不多说直接上代码: // 修改进程的执行用户 func withUserAttr(cmd *exec.Cmd, name s ...
- mysql常用处理时间的相关函数
1.DATE_ADD() 函数向日期添加指定的时间间隔 DAY) AS OrderPayDate FROM Orders 2.DATE_SUB() 函数从日期减去指定的时间间隔 DAY) AS Sub ...
- 雪花算法,生成分布式唯一ID
2.3 基于算法实现 [转载] 这里介绍下Twitter的Snowflake算法——snowflake,它把时间戳,工作机器id,序列号组合在一起,以保证在分布式系统中唯一性和自增性. snowfla ...
- MOOC web前端开发笔记(二)
HTML HTML概述 HTML(HyperText MarkUp Language) "超文本标记语言",以标签的形式规定网页结构,它是制作网页的标准语言 HTML不区分大小写 ...
- java之struts2之异常处理
1.在应用项目中,异常的出现时很正常的.而且项目上线后发生异常也很正常的.那么需要对这些异常有相应的处理机制,以便客户能够看你到更加友好的界面.Struts2中提供了异常处理机制. 2.Struts中 ...