题解报告:poj 1195 Mobile phones(二维BIT裸题)
Description
Write a program, which receives these reports and answers queries about the current total number of active mobile phones in any rectangle-shaped area.
Input

The values will always be in range, so there is no need to check them. In particular, if A is negative, it can be assumed that it will not reduce the square value below zero. The indexing starts at 0, e.g. for a table of size 4 * 4, we have 0 <= X <= 3 and 0 <= Y <= 3.
Table size: 1 * 1 <= S * S <= 1024 * 1024
Cell value V at any time: 0 <= V <= 32767
Update amount: -32768 <= A <= 32767
No of instructions in input: 3 <= U <= 60002
Maximum number of phones in the whole table: M= 2^30
Output
Sample Input
0 4
1 1 2 3
2 0 0 2 2
1 1 1 2
1 1 2 -1
2 1 1 2 3
3
Sample Output
3
4
解题思路:这是一道二维树状数组入门题---单点修改、单点(区间)查询,其思路和一维树状数组非常相似,多加了一个维度而已。下面我们来看看怎么实现这两个基本操作:
将一维数组A[]扩展到二维数组A[][],二维树状数组C[][]来维护矩阵前缀和。
设原始二维数组A[][]={a11,a12,a13,a14,a15,
a21,a22,a23,a24,a25,
a31,a32,a33,a34,a35,
a41,a42,a43,a44,a45,
a51,a52,a53,a54,a55};
那么二维树状数组表示如下:
C[1][]=a1,C[1][]=a1+a1,C[1][]=a1,C[1][]=a1+a1+a1+a1,C[1][]=a15
这是数组A[][]第一行的一维树状数组;
C[][1]=a1+a1,C[][]=a1+a+a+a,C[][]=a+a,C[][]=a+a+a+a+a+a+a+a,C[][]=a+a5
这是数组A[][]第一行和第二行相加后得到的树状数组;
C[3][]=a3,C[3][]=a3+a3,C[3][]=a3,C[3][]=a3+a3+a3+a3,C[3][]=a35
这是数组A[][]第三行的一维树状数组;
C[][]=a+a+a+a,C[][]=a+a+a+a+a+a+a+a,C[][]=a+a+a+a...
这是数组A[][]前4行相加后得到的树状数组;
C[5][]=a5,C[5][]=a5+a5,C[5][]=a5,C[5][]=a5+a5+a5+a5,C[5][]=a55
这是数组A[][]第5行的一维树状数组。
仔细观察以上式子可以发现,二维树状数组C[x][y]的值其实是分别在x、y上的一维树状数组向下、向右(x上+lowbit(x)跳跃(>n停止),y上+lowbit(y)跳跃(>n停止))进行求和,这就是矩阵中坐标点值的单点修改。对于区间查询,同样分别在x、y上的一维树状数组从下往上,从右往左进行累加(y上-lowbit(y)跳跃(<=0停止),x上-lowbit(x)跳跃(<=0停止)),这样就得到了(1,1)到(x,y)矩阵中所有元素的和。
回到本题,题意为给出一些命令进行一些操作:
0 S 初始化一个全0的S*S矩阵,这个命令只会在第一次给出一次;
1 X Y A 给坐标点(X,Y)的值加上A;
2 L B R T 询问(L,B)到(R,T)构成的矩阵中所有元素的总和;
3 结束对矩阵的操作,程序终止。
典型的二维BIT,套一下模板即可,但需要注意一点:给出命令中的坐标都是默认从下标0开始的,为避免陷入死循环和计算错误,在更新和询问操作上统一对每一个坐标点(横、纵坐标)加1。
怎么统计坐标点(L,B)到(R,T)矩阵内所有值呢?给出下面的矩阵:
1 2 3 4 5
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0 0
从图上可得计算公式:[R,T]-[L-1,T]-[R,B-1]+[L-1,B-1](多减去了一个左上角的矩阵,还要把它加回来),这样就得到了点(L,B)到(R,T)矩阵中所有元素的和。
AC代码:
#include<cstdio>
#include<string.h>
const int maxn=;
int op,s,x,y,a,l,b,r,t,C[maxn][maxn];
void add(int x,int y,int val){//单点修改
for(int i=x;i<=s;i+=i&-i)
for(int j=y;j<=s;j+=j&-j)
C[i][j]+=val;
}
int query(int x,int y){//前缀和查询
int ans=;
for(int i=x;i>;i-=i&-i)
for(int j=y;j>;j-=j&-j)
ans+=C[i][j];
return ans;
}
int main(){
while(~scanf("%d%d",&op,&s)){
memset(C,,sizeof(C));
while(~scanf("%d",&op)&&op!=){
if(op==){
scanf("%d%d%d",&x,&y,&a);
x++,y++;add(x,y,a);//单点修改
}
else{
scanf("%d%d%d%d",&l,&b,&r,&t);l++,b++,r++,t++;
printf("%d\n",query(r,t)-query(l-,t)-query(r,b-)+query(l-,b-));//区间查询,求矩形中所有元素的和
}
}
}
return ;
}
题解报告:poj 1195 Mobile phones(二维BIT裸题)的更多相关文章
- poj 1195 Mobile phones(二维树状数组)
树状数组支持两种操作: Add(x, d)操作: 让a[x]增加d. Query(L,R): 计算 a[L]+a[L+1]……a[R]. 当要频繁的对数组元素进行修改,同时又要频繁的查询数组内任一 ...
- poj 1195:Mobile phones(二维树状数组,矩阵求和)
Mobile phones Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 14489 Accepted: 6735 De ...
- poj 1195:Mobile phones(二维线段树,矩阵求和)
Mobile phones Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 14391 Accepted: 6685 De ...
- (简单) POJ 1195 Mobile phones,二维树状数组。
Description Suppose that the fourth generation mobile phone base stations in the Tampere area operat ...
- POJ 1195 Mobile phones(二维树状数组)
Mobile phones Time Limit: 5000MS Mem ...
- POJ 1195 Mobile phones (二维树状数组)
Description Suppose that the fourth generation mobile phone base stations in the Tampere area operat ...
- POJ 1195:Mobile phones 二维树状数组
Mobile phones Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 16893 Accepted: 7789 De ...
- POJ 1195 Mobile phones【二维树状数组】
<题目链接> 题目大意: 一个由数字构成的大矩阵,开始是全0,能进行两种操作1) 对矩阵里的某个数加上一个整数(可正可负)2) 查询某个子矩阵里所有数字的和要求对每次查询,输出结果 解题分 ...
- POJ 1195 Mobile phones【 二维树状数组 】
题意:基础的二维数组,注意 0 + lowbit(0)会陷入无限循环----- 之前做一道一维的一直tle,就是因为这个-------------------------- #include<i ...
随机推荐
- 深度学习综述(LeCun、Bengio和Hinton)
原文摘要:深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.这些方法在很多方面都带来了显著的改善,包含最先进的语音识别.视觉对象识别.对象检測和很多其他领域,比如药物发现和基 ...
- 常用近百个js代码汇总
//檢查空串 function isEmpty(str){ )) return (true); else return(false); } //檢查是否未數字 function isDigit(the ...
- 使用RNN解决句子对匹配问题的常见网络结构
/* 版权声明:能够随意转载,转载时请标明文章原始出处和作者信息 .*/ author: 张俊林 除了序列标注问题外,句子对匹配(Sentence Pair Matching)问题也是NLP中非经常见 ...
- CodeForces - 344D Alternating Current (模拟题)
id=46667" style="color:blue; text-decoration:none">CodeForces - 344D id=46667" ...
- Yii2 mongodb 扩展的where的条件增加大于 小于号
1. mongodb的where中有比較丰富的 条件.例如以下: static $builders = [ 'NOT' => 'buildNotCondition', 'AND' => ' ...
- struts2的文件上传机制
Struts2的上传(基本流程例如以下) 1.Struts2默认採用了apache commons-fileupload 2.Struts2支持三种类型的上传组件 3.须要引入commons-file ...
- Eclipse导入项目: No projects are found to import
Eclipse导入项目: No projects are found to import 如果发导入工程import的时候,出现”No projects are found to import” 的 ...
- The type java.lang.reflect.AnnotatedElement cannot be resolved. It is indirectly referenced from required .class files
我这个错误发生于导入项目的时候..我发现主要是jdk版本的问题.切换一下jdk.直接红叉消失就可以了.....jdk版本一致性还是很重要的
- JQuery实现表格行的上移、下移、删除、增加
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%&g ...
- windows下Python扩展问题error: Unable to find vcvarsall.bat
由于对于Windows下Python扩展不熟,今天遇到一个安装问题,特此做个tag.解决方式在stackoverflow上,网址例如以下: http://stackoverflow.com/quest ...