51nod 1013 3的幂的和 - 快速幂&除法取模
题目地址:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013
Konwledge Point:
快速幂:https://www.cnblogs.com/liubilan/p/9450568.html
除法取模:(a/b)%mod = (a%(b*mod))/b
当a/b比mod小,而a又比mod大的时候a先取余再除以b就会产生错误;为了避免这个错误,只需将模数乘以b即可;
这个题目其实就是找规律,n 有1e9大,不管是常规做法还是快速幂直接相加都会超时;
打表得知:S(n) = 3*S(n-1)+1; //S(n)表示3的0次到3的n次的和;
又因为S(n) = S(n-1) + 3的n次;
联立两个方程可以得到S(n) = (3的n+1次-1)/2;
附代码:
#include<iostream>
using namespace std; #define LL long long
const LL MOD = ;
LL n; LL pow(LL x)
{
LL ans=, tmp=;
while(x) {
if(x&) {
ans *= tmp;
ans%=(MOD*);
}
tmp *= tmp;
tmp %= (MOD*);
x>>=;
}
return ans;
} int main()
{
while(cin>>n)
{
cout<<(pow(n+)-)/<<endl;
} return ;
}
51nod 1013 3的幂的和 - 快速幂&除法取模的更多相关文章
- 51nod 1113 矩阵快速幂( 矩阵快速幂经典模板 )
1113 矩阵快速幂 链接:传送门 思路:经典矩阵快速幂,模板题,经典矩阵快速幂模板. /******************************************************* ...
- 除法取模练习(51nod 1119 & 1013 )
题目:1119 机器人走方格 V2 思路:求C(m+n-2,n-1) % 10^9 +7 (2<=m,n<= 1000000) 在求组合数时,一般都通过双重for循环c[i][ ...
- HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)
传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...
- 乘方快速幂 OR 乘法快速幂
关于快速幂这个算法,已经不想多说,很早也就会了这个算法,但是原来一直靠着模板云里雾里的,最近重新学习,发现忽视了一个重要的问题,就是若取模的数大于int型,即若为__int64的时候应该怎么办,这样就 ...
- Educational Codeforces Round 13——D. Iterated Linear Function(矩阵快速幂或普通快速幂水题)
D. Iterated Linear Function time limit per test 1 second memory limit per test 256 megabytes input ...
- 51nod 1013:3的幂的和 快速幂
1013 3的幂的和 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 求:3^0 + 3^1 +...+ 3^(N) mod 1000000007 ...
- 51Nod 1013 3的幂的和 快速幂 | 乘法逆元 | 递归求和公式
1.乘法逆元 直接使用等比数列求和公式,注意使用乘法逆元 ---严谨,失细节毁所有 #include "bits/stdc++.h" using namespace std; #d ...
- 51Nod 1046 A^B Mod C Label:快速幂
给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...
- 51Nod - 1242 斐波那契(快速幂)
斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, ...
随机推荐
- [笔记]如何将已存在的JAVA添加到当前ECLIPSE JAVA工程中
找到路径.ctrl C .ctrl V F5就行了
- 【WIP】markdown
创建: 2018/03/18 [任务表]TODO 这个博客从来不点发布到首页, 完全100%自用, 全部详细完整的干货.千辛万苦找到这里看到一片空白, 是不是很愤怒? 那就对啦233333
- java jdbc 与mysql连接的基本步骤
Java与mysql链接的基本步骤: 第一步:注册驱动 方法一: DriverManager.registerDriver(new com.mysql.jdbc.Driver()); 方法二:设置属性 ...
- python 高阶函数二 map()和reduce()
一.map()函数 map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回. >>> fro ...
- zoj 2532 Internship【最小割】
就是求哪些边在最大流上满流,也就是找割边.把0作为t点,s向所有的1~n连流量为inf的边,其他的边按照流量连.跑一遍最大流,从s顺着有残余流量的正向边dfs打标记fr,从t顺着正向边有残余流量的反向 ...
- 51nod 1120 机器人走方格 V3 【卡特兰数+卢卡斯定理+组合数】
-我并不知道为什么事卡特兰数,反正用dp打的表就是卡特兰数,因为是两个三角所以再乘个2 卡特兰数使用\( h(n)=\frac{C_{2n}^{n}}{n+1} \)因为范围比较大所以组合数部分用卢卡 ...
- Linux的远程桌面配置
一.Ubuntu的远程桌面 Ubuntu默认已安装好VNC服务端组件vino-server,只需要在“系统设置->首选项->桌面共享”中设置即可. 1.设置桌面共享首选项 2.设置好之后, ...
- 【SpringCloud构建微服务系列】Feign的使用详解
一.简介 在微服务中,服务消费者需要请求服务生产者的接口进行消费,可以使用SpringBoot自带的RestTemplate或者HttpClient实现,但是都过于麻烦. 这时,就可以使用Feign了 ...
- B - Crossword solving
Erelong Leha was bored by calculating of the greatest common divisor of two factorials. Therefore he ...
- [POI2008]海报PLA
Description N个矩形,排成一排. 现在希望用尽量少的矩形海报Cover住它们. Input 第一行给出数字N,代表有N个矩形.N在[1,250000] 下面N行,每行给出矩形的长与宽.其值 ...