传送门

不难发现,对于每一条树边肯定要减小它的权值,对于每一条非树边要增加它的权值

对于每一条非树边\(j\),他肯定与某些树边构成了一个环,那么它的边权必须大于等于这个环上的所有边

设其中一条边为\(i\),变化量为\(x\),那么就要满足\(w_i-x_i\leq w_j+x_j\),即\(x_i+x_j\geq w_i-w_j\)

然后这就是个线性规划了。因为这线性规划的目标函数要取最小,所以我们把它对偶一下就可以了

//minamoto
#include<bits/stdc++.h>
#define R register
#define Loli true
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1005,M=10005;const double eps=1e-8,inf=1e18;
struct eg{int v,nx,id;}e[N<<1];int head[N],tot;
inline void add(R int u,R int v,R int id){e[++tot]={v,head[u],id},head[u]=tot;}
int n,m,nn,mm,u,v,x,dep[N],fa[N],id[N],U[N],V[N],W[N],F[N],A[N],B[N];
double a[N][M];
void dfs(int u){go(u)if(v!=fa[u])fa[v]=u,id[v]=e[i].id,dep[v]=dep[u]+1,dfs(v);}
void pivot(int l,int e){
double t=a[l][e];a[l][e]=1;fp(i,0,m)a[l][i]/=t;
fp(i,0,n)if(i!=l&&fabs(a[i][e])>eps){
t=a[i][e],a[i][e]=0;
fp(j,0,m)a[i][j]-=t*a[l][j];
}
}
void simplex(){
while(Loli){
int l=0,e=0;double mn=inf;
fp(i,1,m)if(a[0][i]>eps){e=i;break;}if(!e)return;
fp(i,1,n)if(a[i][e]>eps&&a[i][0]/a[i][e]<mn)mn=a[i][0]/a[i][e],l=i;
pivot(l,e);
}
}
int main(){
// freopen("testdata.in","r",stdin);
nn=read(),mm=read();
fp(i,1,mm){
U[i]=read(),V[i]=read(),W[i]=read(),F[i]=read(),A[i]=read(),B[i]=read();
if(F[i])add(U[i],V[i],i),add(V[i],U[i],i);
}dfs(1),n=mm;
fp(i,1,mm)if(F[i])a[i][0]=B[i];
else{
a[i][0]=A[i],u=U[i],v=V[i];
while(u!=v){
if(dep[u]<dep[v])swap(u,v);
x=id[u];if(W[x]>W[i])++m,a[x][m]=a[i][m]=1,a[0][m]=W[x]-W[i];
u=fa[u];
}
}simplex();printf("%.0lf\n",-a[0][0]);return 0;
}

bzoj3118: Orz the MST(线性规划+单纯形法)的更多相关文章

  1. BZOJ3118 : Orz the MST

    对于树边显然只需要减少权值,对于非树边显然只需要增加权值 设i不为树边,j为树边 X[i]:i增加量 X[j]:j减少量 C[i]:修改1单位i的代价 对于每条非树边i(u,v),在树上u到v路径上的 ...

  2. BZOJ3118 Orz the MST 【单纯形 + 生成树】

    题目链接 BZOJ3118 题解 少有的单纯形好题啊 我们先抽离出生成树 生成树中的边只可能减,其它边只可能加 对于不在生成树的边,其权值一定要比生成树中其端点之间的路径上所有的边都大 然后就是一个最 ...

  3. bzoj 3118: Orz the MST(单纯形)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3118 题意:给出一个图以及图中指定的n-1条边组成的生成树.每条边权值加1或者减去 ...

  4. bzoj3265: 志愿者招募加强版(线性规划+单纯形法)

    传送门 鉴于志愿者招募那题我是用网络流写的所以这里还是写一下单纯形好了-- 就是要我们求这么个线性规划(\(d_{ij}\)表示第\(i\)种志愿者在第\(j\)天能不能服务,\(x_i\)表示第\( ...

  5. BZOJ 3118 Orz the MST

    权限题qwq 如果我们要使得某棵生成树为最小生成树,那么上面的边都不能被替代,具体的,对于一个非树边,它的权值要\(\ge\)它两端点在树上的路径上的所以边的权值,所以对于每个非树边就可以对一些树边列 ...

  6. ACM模板_axiomofchoice

    目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机 ...

  7. 【bzoj1061】 Noi2008—志愿者招募

    http://www.lydsy.com/JudgeOnline/problem.php?id=1061 (题目链接) 题意 给定n天,第i天需要ai个志愿者,有m类志愿者,每类志愿者工作时间为[l, ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. Maple入门使用教程

    http://anony3721.blog.163.com/blog/static/51197420105173915247/ 命令的运行:1.每条命令必须用":"(运行后不显示) ...

随机推荐

  1. solr相关文章

    Solr集群架构概述及delta-import详细配置 背景 由于项目原因,重新熟悉了下Solr,版本为3.6,搭建了主从Solr服务,并使用DIH从RDBMS数据源增量更新索引. 其实也没什么技术含 ...

  2. 转: 关于Linux常用的二进制文件分析方法

    当你在unix下拿到一个二进制文件但不知道它是什么的时候,可以通过以下方法得到一此提示 1. 最首先应该尝试strings命令,比如拿到一个叫cr1的二进制文件,可以: $ strings cr1 | ...

  3. Effective C++ Item 27 少做转型操作

    本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie todo Item34 旧式转型 (T) expression 或 T (expressio ...

  4. Please enter a commit message to explain why this merge is necessary.

    Please enter a commit message to explain why this merge is necessary. 请输入提交消息来解释为什么这种合并是必要的 git 在pul ...

  5. web爬虫之登录google paly 商店

    我们先打开Google play 首页 ,点击右上角"登陆"button,即跳到登陆页面 每次我要用爬虫的方式来登陆某个站点的时候,我都会先随便输入一个账号password点击登陆 ...

  6. 3 微信开发本地代理环境的搭建--实现将内网ip映射到外网

    微信公众号的开发,要搭建网站,并且随时都有可能修改网站内容进行调试,这就需要临时外网能返回本地开发环境搭建的项目进行测试,即内网映射到公网,但是好多开发者没有自己的域名和服务器,这里我们先来搭建一个本 ...

  7. POJ3761 Bubble Sort

    对1~n组成的序列进行冒泡排序,一共进行了k趟,问有几个符合题意的序列. 注意:这里指每一趟是指交换当前相邻的全部逆序对,比如:2 1 4 3进行一趟交换就是1 2 3 4 假设我们细心观察.就会发现 ...

  8. web前端开发 代码规范 及注意事项

    web前端开发 代码规范 及注意事项 外部命名规范 html .js .css文件名称命名规范 my_script.js my_camel_case_name.css my_index.html 路径 ...

  9. flask的CBV,flash,Flask-Session,及WTForms-MoudelForm

    1,CBV: from flask import vews class LoginView(views.MethodView): def get(self): return "雪雪其实也很好 ...

  10. Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) E. Prairie Partition 二分+贪心

    E. Prairie Partition It can be shown that any positive integer x can be uniquely represented as x =  ...