分层图,建k层,设(i,j,0)为点(i,j)的满油状态,全图的流量都是1,因为重复走到一个点没有意义。如果当前点是加油站,那么它向它上左的点连费用为a的边,向下右连费用为a+b的边;

否则,这个点的所有层向零层连费用为a+c的边表示建加油站和加油,其他的当前点是加油站的情况连即可,但是不用加a。然后s向(1,1,0)连,(n,n)的所有层向t连,最后跑最小费用最大流。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<algorithm>
#include<map>
using namespace std;
const int N=2000005,inf=1e9;
int n,m,a,b,c,h[N],cnt=1,dis[N],s,t,ans,fr[N],d[105][105],tot,id[105][105][15];
bool v[N];
struct qwe
{
int ne,no,to,va,c;
}e[N<<2];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w,int c)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=w;
e[cnt].c=c;
h[u]=cnt;
}
void ins(int u,int v,int w,int c)
{
add(u,v,w,c);
add(v,u,0,-c);
}
bool spfa()
{
queue<int>q;
for(int i=s;i<=t;i++)
dis[i]=inf;
dis[s]=0;
v[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
v[u]=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&dis[e[i].to]>dis[u]+e[i].c)
{
dis[e[i].to]=dis[u]+e[i].c;
fr[e[i].to]=i;
if(!v[e[i].to])
{
v[e[i].to]=1;
q.push(e[i].to);
}
}
}
return dis[t]!=inf;
}
void mcf()
{//cout<<"OK"<<endl;
int x=inf;
for(int i=fr[t];i;i=fr[e[i].no])
x=min(x,e[i].va);
for(int i=fr[t];i;i=fr[e[i].no])
{
e[i].va-=x;
e[i^1].va+=x;
ans+=x*e[i].c;
}
}
int main()
{
n=read(),m=read(),a=read(),b=read(),c=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
d[i][j]=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=0;k<=m;k++)
id[i][j][k]=++tot;
s=0,t=tot+1;
ins(s,id[1][1][0],1,0);
for(int i=0;i<=m;i++)
ins(id[n][n][i],t,1,0);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(d[i][j])
{
for(int k=m-1;k>=0;k--)
{
if(i>1)
ins(id[i-1][j][k],id[i][j][0],1,a);
if(j>1)
ins(id[i][j-1][k],id[i][j][0],1,a);
if(i<n)
ins(id[i+1][j][k],id[i][j][0],1,a+b);
if(j<n)
ins(id[i][j+1][k],id[i][j][0],1,a+b);
}
}
else
{
for(int k=m;k>0;k--)
ins(id[i][j][k],id[i][j][0],1,a+c);
for(int k=m-1;k>=0;k--)
{
if(i>1)
ins(id[i-1][j][k],id[i][j][k+1],1,0);
if(j>1)
ins(id[i][j-1][k],id[i][j][k+1],1,0);
if(i<n)
ins(id[i+1][j][k],id[i][j][k+1],1,b);
if(j<n)
ins(id[i][j+1][k],id[i][j][k+1],1,b);
}
}
}
while(spfa())
mcf();
printf("%d\n",ans);
return 0;
}

洛谷 P4009 汽车加油行驶问题 【最小费用最大流】的更多相关文章

  1. 洛谷 P4009 汽车加油行驶问题 解题报告

    P4009 汽车加油行驶问题 题目描述 给定一个\(N×N\)的方形网格,设其左上角为起点◎,坐标(1,1) ,\(X\)轴向右为正,\(Y\)轴向下为正,每个方格边长为1 ,如图所示. 一辆汽车从起 ...

  2. 洛谷P4009 汽车加油行驶问题

    题目描述 给定一个 N \times NN×N 的方形网格,设其左上角为起点◎,坐标(1,1)(1,1),XX 轴向右为正, YY 轴向下为正,每个方格边长为 11 ,如图所示. 一辆汽车从起点◎出发 ...

  3. 洛谷P4009汽车加油行驶问题——网络流24题(最短路)

    题目:https://www.luogu.org/problemnew/show/P4009 网络流24题中不是网络流的最短路题: 把每个点拆成各个油量上的点,根据要求连边即可: 注意:点数最大为10 ...

  4. 洛谷P4009 汽车加油行驶问题(分层最短路)

    传送门 说好的网络流24题呢……上次是状压dp,这次怎么又最短路了…… 不过倒是用这题好好学了一下分层图最短路 把每一个位置$(x,y)$,油量剩余$k$表示为一个状态,然后转化成一个$n$进制数,这 ...

  5. 洛谷 P4016 负载平衡问题 【最小费用最大流】

    求出平均数sum,对于大于sum的点连接(s,i,a[i]-sum,0),表示这个点可以流出多余的部分,对于小于sum的点连接(i,t,sum-a[i],0)表示这个点可以接受少的部分,然后每个点向相 ...

  6. 洛谷 P3381 【【模板】最小费用最大流】

    题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的 ...

  7. 题解 洛谷 P3381 【【模板】最小费用最大流】

    发了网络流,再来一发费用流 能做费用流的,网络流自然做得来,但在这还是不要脸的安利一下自己的博客(里面也有网络流的题解): 点我 扯远了... 费用流,就是在不炸水管的情况下求源点到汇点的最小费用. ...

  8. 洛谷 P1251 餐巾计划问题【最小费用最大流】

    建图细节比较多,对于每个点i,拆成i和i',i表示用的餐巾,i'表示脏餐巾,连接: (s,i,r[i],p)表示在这一天买新餐巾 (i,t,r[i],0)表示这一天用了r[i]的餐巾 (s,i+n,r ...

  9. P4009 汽车加油行驶问题

    P4009 汽车加油行驶问题 最短路 清一色的spfa....送上一个堆优化Dijkstra吧(貌似代码还挺短) 顺便说一句,堆优化Dj跑分层图灰常好写 #include<iostream> ...

随机推荐

  1. Eddy's AC难题--hdu2200(递推)

    Problem Description Eddy是个ACMer,他不仅喜欢做ACM题,而且对于Ranklist中每个人的ac数量也有一定的研究,他在无聊时经常在纸上把Ranklist上每个人的ac题目 ...

  2. 如何解决XML文件中的警告提示“No grammar constraints (DTD or XML Schema) referenced in the document.”

    解决方法:加上 <!DOCTYPE xml> <?xml version="1.0" encoding="UTF-8"?> <!D ...

  3. 附加数据库时,提示“Microsoft SQL Server,错误: 5120”, 解决方案

    错误的提示内容为:

  4. 解决安装oracle11g r2时提示pdksh conflicts with ksh-20100621-2.el6.i686问题

    http://blog.csdn.net/linghao00/article/details/7943740 http://www.2cto.com/os/201306/218566.html 在Ce ...

  5. 【APUE】fork函数

    #include <unisth.h> pid_t fork(void) fork函数被调用一次,返回两次.子进程的返回值是0,父进程的返回值是子进程的进程id. fork函数调用一次却返 ...

  6. Android开发之自己定义Spinner样式的效果实现(源码实现)

    android系统自带的Spinner样式是远远满足不了我们实际开发过程中对Spinner UI风格的要求,因此我们肯定须要为了切合整个应用的风格,改动我们的Spinner样式.系统给我们提供了两种常 ...

  7. poj2488--A Knight&#39;s Journey(dfs,骑士问题)

    A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 31147   Accepted: 10 ...

  8. C语言的结构体和 C++结构体的区别

     C语言的结构体和 C++结构体的区别 关于C++中声明结构体中需要使用构造器创建实例对象的语法: <C++的结构体构造方法的基本概念:结构体的构造方法需要和结构体的名字相同,并且无返回值,也不 ...

  9. The type java.lang.reflect.AnnotatedElement cannot be resolved. It is indirectly referenced from required .class files

    我这个错误发生于导入项目的时候..我发现主要是jdk版本的问题.切换一下jdk.直接红叉消失就可以了.....jdk版本一致性还是很重要的

  10. python 【第二篇】python基本数据类型

    python数据类型 python的数据类型和大多数编程语言一样,有int,float,long,string但是python有三个特殊的数据类型:列表,元组,字典 如果不知道你的数据类型有什么方法: ...