CRT+LUCAS+费马小定理+拓展欧拉定理

幂指数太大了怎么办?欧拉定理,n太大了怎么办?上lucas,模数太大了怎么办?上crt。然后就好了,唯一注意的是要用拓展欧拉定理,n%phi(p)+phi(p)

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
typedef long long ll;
const ll mod = 999911659ll, t[] = {, , , };
ll n, g;
ll a[], fac[][];
ll power(ll x, ll t, ll mod)
{
ll ret = 1ll;
for(; t; t >>= 1ll, x = x * x % mod) if(t & 1ll) ret = ret * x % mod;
return ret;
}
ll inv(ll x, ll p)
{
return power(x, p - , p);
}
ll C(ll n, ll m, int id)
{
if(n < m) return ;
ll ret = fac[id][n] % t[id] * inv(fac[id][m], t[id]) % t[id] * inv(fac[id][n - m], t[id]) % t[id];
// printf("C(%lld %lld) = %lld mod = %lld\n", n, m, ret, t[id]);
return ret;
}
ll lucas(ll n, ll m, int id)
{
if(n < m) return ;
if(n < t[id] && m < t[id]) return C(n, m, id);
return lucas(n % t[id], m % t[id], id) % t[id] * lucas(n / t[id], m / t[id], id) % t[id];
}
ll CRT()
{
ll M = mod - , ret = ;
for(int i = ; i < ; ++i) ret = (ret + a[i] * (M / t[i]) % M * inv(M / t[i], t[i]) % M) % M;
return ret % M;
}
int main()
{
scanf("%lld%lld", &n, &g);
for(int i = ; i < ; ++ i)
{
fac[i][] = 1ll;
for(int j = ; j <= t[i]; ++j) fac[i][j] = fac[i][j - ] * (ll)j % t[i];
for(ll j = 1ll; j * j <= n; ++j) if(n % j == )
{
ll mul = lucas(n, j, i);
// printf("C(%lld %lld) = %lld\n", n, j, mul);
a[i] = (a[i] + mul) % t[i];
if(j * j != n)
{
mul = lucas(n, n / j, i);
// printf("C(%lld %lld) = %lld\n", n, n / j, mul);
a[i] = (a[i] + mul) % t[i];
}
}
}
printf("%lld\n", power(g % mod, CRT() % (mod - ) + mod - , mod) % mod);
return ;
}

bzoj1951的更多相关文章

  1. 【bzoj1951】 Sdoi2010—古代猪文

    http://www.lydsy.com/JudgeOnline/problem.php?id=1951 (题目链接) 题意 废话一堆..求解: Solution 真的是数论经典题,什么都用上了. 因 ...

  2. BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...

  3. 【BZOJ1951】[SDOI2010]古代猪文

    [BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...

  4. 【BZOJ1951】古代猪文(CRT,卢卡斯定理)

    [BZOJ1951]古代猪文(CRT,卢卡斯定理) 题面 BZOJ 洛谷 题解 要求什么很显然吧... \[Ans=G^{\sum_{k|N}{C_N^k}}\] 给定的模数是一个质数,要求解的东西相 ...

  5. 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT

    [BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...

  6. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

  7. 【题解】古代猪文 [SDOI2010] [BZOJ1951] [P2480]

    [题解]古代猪文 [SDOI2010] [BZOJ1951] [P2480] 在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心 ...

  8. BZOJ1951 古代猪文 【数论全家桶】

    BZOJ1951 古代猪文 题目链接: 题意: 计算\(g^{\sum_{k|n}(^n_k)}\%999911659\) \(n\le 10^9, g\le 10^9\) 题解: 首先,根据扩展欧拉 ...

  9. BZOJ1951[SDOI2010]古代猪文

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  10. 数学的东西(BZOJ1951)

    #include <cstdio> #define LL long long LL finmo=; LL fac[][],inv[][]; LL tmp[],rev[]; LL n,g,x ...

随机推荐

  1. HTTP协议详解【转载】

    Author :Jeffrey 引言 HTTP是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统.它于1990年提出,经过几年的使用与发展,得到不断地完善和扩展.目前 ...

  2. POJ 3159 【朴素的差分约束】

    好吧终于知道什么是“高大上”的差分约束了.嗷嗷 题意: 小朋友们分糖果,某个小朋友不想另外一个小朋友分到的糖果数比自己多N块以上. 求编号为N的小朋友最多比编号为1的小朋友多分多少块糖果. 思路: 差 ...

  3. Java中设置Session过期时间(Spring Boot)

    1.Spring Boot: server.session.cookie.comment = #注释会话cookie. server.session.cookie.domain = #会话cookie ...

  4. 一次mysql 优化 (Using temporary ; Using filesort)

    遇到一个SQL执行很慢 SQL 如下: SELECT ... FROM tableA WHERE time >= 1492044535 and time <= 1492046335 GRO ...

  5. 你创建线程池最好分为两种线程池,io密集型线程池,或者cpu密集型线程池

    你创建线程池最好分为两种线程池,io密集型线程池,或者cpu密集型线程池. 否则,如果只用一个线程池的话,不管是iO密集的线程,或者cpu消耗大的都放在同一个线程池的话,会发生线程池被撑满的情况

  6. Linux学习笔记总结

    零.求人不如求已:        1. 在Linux中,文件,目录,驱动,命令,脚本都视为文件,也即一切皆file. 2.记住使用Linux 的关键就是六个字: 命令.选项.參数. 3.学会看帮助,不 ...

  7. performSelector调用和直接调用的区别

    今天在准备出笔试题的过程中随便搜了一下其他的笔试题,看到其中一个就是关于performSelector与直接调用的区别. 个人感觉这其实是一个陷阱题,因为大部分应用场景下,用哪一种都可以,可以说是没有 ...

  8. VUE组件如何与iframe通信问题

    vue组件内嵌一个iframe,现在想要在iframe内获取父vue组件内信息,由于本人技术有限,采用的是H5新特性PostMessage来解决跨域问题. postMessage内涵两个API: on ...

  9. 微博试水卖车社交电商怎样令4S“颤抖”?

        微博对社交电商的探索一直在深入,年初.微博上线了"支付"产品.从而使社交产业链实现了闭环,随后,微博又尝试售卖多种商品,不断扩大移动电商的试水范围,近期微博大规模汽车销售收 ...

  10. 【MongoDB】The description of procedure in MongoDB

    In this blog the procedure of mongodb will be described in details. It is known that mongodb has pro ...