BZOJ_2118_墨墨的等式_最短路
BZOJ_2118_墨墨的等式_最短路
Description
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N、{an}、以及B的取值范围,求出有多少B可以使等式存在非负整数解。
Input
输入的第一行包含3个正整数,分别表示N、BMin、BMax分别表示数列的长度、B的下界、B的上界。输入的第二行包含N个整数,即数列{an}的值。
Output
输出一个整数,表示有多少b可以使等式存在非负整数解。
Sample Input
3 5
Sample Output
HINT
对于100%的数据,N≤12,0≤ai≤5*10^5,1≤BMin≤BMax≤10^12。
首先将L,R差分,求[1,x]有多少符合条件的数。
但是x太大,考虑将x%min{ai},这样我们求的x就变成500000以内的了。
设dis[i]表示长度为b且b%mina=i且最小的b。
也就是我们对于每个模之后的数求一个最小能表示的,然后就能求出有多少个可以表示的了。
代码:
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <ext/pb_ds/priority_queue.hpp>
using namespace std;
using namespace __gnu_pbds;
#define N 500050
typedef long long ll;
ll dis[N],L,R;
int n,minl,a[20],vis[N];
__gnu_pbds::priority_queue<pair<ll,int> >q;
ll solve(ll x) {
ll re=0;
int i;
for(i=0;i<minl;i++) {
if(dis[i]<=x) {
re+=(x-dis[i])/minl+1;
}
}
return re;
}
int main() {
scanf("%d%lld%lld",&n,&L,&R);
int i;
minl=1<<30;
for(i=1;i<=n;i++) {
scanf("%d",&a[i]);
minl=min(minl,a[i]);
}
memset(dis,0x3f,sizeof(dis));
dis[0]=0; q.push(make_pair(0,0));
while(!q.empty()) {
int x=q.top().second; q.pop();
if(vis[x]) continue;
vis[x]=1;
ll v=dis[x];
for(i=1;i<=n;i++) {
if(dis[(v+a[i])%minl]>v+a[i]) {
dis[(v+a[i])%minl]=v+a[i];
q.push(make_pair(-dis[(v+a[i])%minl],(v+a[i])%minl));
}
}
}
printf("%lld\n",solve(R)-solve(L-1));
}
BZOJ_2118_墨墨的等式_最短路的更多相关文章
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
- 【BZOJ2118】墨墨的等式 最短路
[BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...
- BZOJ2118:墨墨的等式(最短路)
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- 【BZOJ 2118】 2118: 墨墨的等式 (最短路)
2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...
- BZOJ2118: 墨墨的等式(最短路 数论)
题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...
- [图论训练]BZOJ 2118: 墨墨的等式 【最短路】
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- BZOJ2118: 墨墨的等式(最短路构造/同余最短路)
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- 【同余最短路】【例题集合】洛谷P3403 跳楼机/P2371 墨墨的等式
接触到的新内容,[同余最短路]. 代码很好写,但思路不好理解. 同余最短路,并不是用同余来跑最短路,而是通过同余来构造某些状态,从而达到优化时间空间复杂度的目的.往往这些状态就是最短路中的点,可以类比 ...
随机推荐
- POJ 1006-Biorhythms,中国剩余定理,学信安的路过!
Biorhythms 我竟然1A了, 终于从一天的浑噩中找回点自信了.人生第一次做中国剩余定理的题 ...
- 修改K/3 Cloud管理中心端口
有时候可能会应为端口号被占用或者数据隔离等等,不会使用K/3 Cloud默认的8000端口,这时候就设计到要修改端口号了,具体步骤如下: 1. 2. 打开{安装目录}\ManageSite\App_D ...
- 【BZOJ1237】配对(贪心,DP)
题意:有n个a[i]和b[i],调整顺序使abs(a[i]-b[i])之和最小,但a[i]<>b[i].保证所有 Ai各不相同,Bi也各不相同. 30%的数据满足:n <= 104 ...
- Event Logging 技术简介
https://blog.csdn.net/xiliang_pan/article/details/41805023
- 前端学习之-- JavaScript
JavaScript笔记 参考:http://www.cnblogs.com/wupeiqi/articles/5602773.html javaScript是一门独立的语言,游览器都具有js解释器 ...
- POJ 1780 【手工递归】【欧拉回路】
题意: 1.提供密码的位数. 2.密码的输入可以一直保持,取后n位作为密码.如果密码正确则开锁. 3.设计一种方法使得在输入最少的情况下破译.(即保证每个密码只输入一次) 4.输出输入的数字的序列. ...
- Hibernate学习笔记(四)
我是从b站视频上学习的hibernate框架,其中有很多和当前版本不符合之处,我在笔记中进行了修改以下是b站视频地址:https://www.bilibili.com/video/av14626440 ...
- cef3的各个接口你知道几个
CEF3基本的框架包含C/C++程 序接口,通过本地库的接口来实现,而这个库则会隔离宿主程序和 Chromium&Webkit的操作细节.它在浏览器控件和宿主程序之间提供紧密的整合,它支持用户 ...
- LoadRunner 比较字符串是否相等
int strcmp ( const char *string1, const char *string2 );大小写敏感.int stricmp ( const char *string1, con ...
- 鸟哥的Linux私房菜-----12、学习使用Shell scripts