参考书

《TensorFlow:实战Google深度学习框架》(第2版)

以下TensorFlow程序完成了从图像片段截取,到图像大小调整再到图像翻转及色彩调整的整个图像预处理过程。

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# coding=utf-8 """
@author: Li Tian
@contact: 694317828@qq.com
@software: pycharm
@file: figure_deal_test2.py
@time: 2019/1/28 11:39
@desc: 图像预处理完整样例
""" import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt # 给定一张图像,随机调整图像的色彩。因为调整亮度,对比度,饱和度和色相的顺序会影响最后得到的结果。
# 所以可以定义多种不同的顺序。具体使用哪一种顺序可以在训练数据预处理时随机地选择一种。
# 这样可以进一步降低无关因素对模型的影响。
def distort_color(image, color_ordering=0):
if color_ordering == 0:
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5) elif color_ordering == 1:
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2) elif color_ordering == 2:
# 还可以定义其他的排列,但是在这里就不再一一列出了。
# ...
pass return tf.clip_by_value(image, 0.0, 1.0) # 给定一张解码后的图像、目标图像的尺寸以及图像上的标注框,此函数可以对给出的图像进行预处理。
# 这个函数的输入图像是图像识别问题中原始的训练图像,而输出则是深井网络模型的输入层。注意这里
# 只是处理模型的训练数据,对于预测的数据,一般不需要使用随机变换的步骤。。
def preprocess_for_train(image, height, width, bbox):
# 如果没有提供标注框,则认为整个图像就是需要关注的部分。
if bbox is None:
bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) # 转换图像张量的类型。
if image.dtype != tf.float32:
image = tf.image.convert_image_dtype(image, dtype=tf.float32) # 随机截取图像,减小需要关注的物体大小对图像识别算法的影响。
bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(tf.shape(image), bounding_boxes=bbox)
distorted_image = tf.slice(image, bbox_begin, bbox_size) # 将随机截取的图像调整为神经网络层输入层的大小。大小调整的算法是随机选择的。
distorted_image = tf.image.resize_images(distorted_image, [height, width], method=np.random.randint(4)) # 随机左右翻转图像。
distorted_image = tf.image.random_flip_left_right(distorted_image) # 使用一种随机的顺序调整图像色彩。
distorted_image = distort_color(distorted_image, np.random.randint(2)) return distorted_image image_raw_data = tf.gfile.FastGFile('F:/Python3Space/figuredata_deal/krystal.jpg', "rb").read()
with tf.Session() as sess:
img_data = tf.image.decode_jpeg(image_raw_data)
boxes = tf.constant([[[0.05, 0.05, 0.9, 0.7], [0.35, 0.47, 0.5, 0.56]]]) # 开始绘图
plt.rcParams['font.sans-serif'] = ['SimHei'] # 步骤一(替换sans-serif字体)
plt.rcParams['axes.unicode_minus'] = False # 步骤二(解决坐标轴负数的负号显示问题)
fig1 = plt.figure(1, (16, 9), dpi=100) # 运行6次获得6种不同的图像。
for i in range(6):
# 将图像的尺寸调整为299*299.
ax = plt.subplot(2, 3, i+1)
ax.set_title('运行第' + str(i+1) + '次的图像')
result = preprocess_for_train(img_data, 299, 299, boxes)
plt.imshow(result.eval()) fig1.subplots_adjust(wspace=0.1)
# plt.tight_layout() plt.savefig('F:/Python3Space/figuredata_deal/图像预处理完整样例.jpg', bbox_inches='tight')
 

运行结果:

TensorFlow图像预处理完整样例的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow 图像预处理完整样例

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...

  2. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:图像预处理完整样例

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #随机调整图片的色彩,定义两种顺序. def di ...

  3. TensorFlow入门之MNIST样例代码分析

    这几天想系统的学习一下TensorFlow,为之后的工作打下一些基础.看了下<TensorFlow:实战Google深度学习框架>这本书,目前个人觉得这本书还是对初学者挺友好的,作者站在初 ...

  4. TensorFlow图像预处理-函数

    更多的基本的API请参看TensorFlow中文社区:http://www.tensorfly.cn/tfdoc/api_docs/python/array_ops.html 下面是实验的代码,可以参 ...

  5. TensorFlow 图像预处理(一) 图像编解码,图像尺寸调整

    from: https://blog.csdn.net/chaipp0607/article/details/73029923 TensorFlow提供了几类图像处理函数,下面介绍图像的编码与解码,图 ...

  6. 『TensorFlow』第九弹_图像预处理_不爱红妆爱武装

    部分代码单独测试: 这里实践了图像大小调整的代码,值得注意的是格式问题: 输入输出图像时一定要使用uint8编码, 但是数据处理过程中TF会自动把编码方式调整为float32,所以输入时没问题,输出时 ...

  7. 通过Canvas及File API缩放并上传图片完整演示样例

    创建一个只管的用户界面,并同意你控制图片的大小.上传到server端的数据,并不须要处理enctype为 multi-part/form-data 的情况.只一个简单的POST表单处理程序就能够了. ...

  8. Nginx完整配置配置样例【官方版】

    我们主要参考nginx官方给出的完整配置的样例: https://www.nginx.com/resources/wiki/start/topics/examples/full/# 完整摘录如下: n ...

  9. Android清理设备内存具体完整演示样例(二)

    版权声明: https://blog.csdn.net/lfdfhl/article/details/27672913 MainActivity例如以下: package cc.c; import j ...

随机推荐

  1. MongoDB:分片(简介 & 自动分片 & 片键)

    分片(增加服务器,水平扩展)是MongoDB的扩展方式,通过分片能过增加更多的机器来应对不断增加的负载和数据,还不影响应用. [简介] 分片(sharding)是指将数据拆分,将其分散存在不同的机器上 ...

  2. 【转载】Http协议与TCP协议简单理解后续

    写了这么长时间的代码,发现自己对TCP/IP了解的并不是很透彻.虽然会用C#的HttpClient类来进行网络编程,也可以使用Chrome的开发者工具来检测每一次的HTTP请求的报文头与报文体,也知道 ...

  3. nextSibling和previousSibling

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  4. POJ 1151 HDU 1542 Atlantis(扫描线)

    题目大意就是:去一个地方探险,然后给你一些地图描写叙述这个地方,每一个描写叙述是一个矩形的右下角和左上角.地图有些地方是重叠的.所以让你求出被描写叙述的地方的总面积. 扫描线的第一道题,想了又想,啸爷 ...

  5. HDU 1028 Ignatius and the Princess III (母函数或者dp,找规律,)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. 使用脚本删除ios工程中未使用图片

    使用脚本删除ios工程中未使用图片 最近在读唐巧大神的<iOS开发进阶>,学到了一个大招:使用脚本删除ios中未使用的图片(纸书上有点小问题,参考github上的issue:使用脚本删除i ...

  7. u-boot简单学习笔记(一)

    一:Bootloader启动结构:      由于 Boot Loader 的实现依赖于 CPU 的体系结构,因此大多数 Boot Loader 都分为 stage1 和 stage2 两大部分.依赖 ...

  8. 一个UserState(WCF)的小例子

    练习WCF的时候,遇到了一个异步调用(也许是)的问题.后来使用了重载参数UserState试着解决了一下,但不是很清楚这个参数的其他用途.现在贴出这个例子. Service部分: 客户端后台调用部分: ...

  9. CodeForces 559C Gerald and Gia (格路+容斥+DP)

    CodeForces 559C Gerald and Gia 大致题意:有一个 \(N\times M\) 的网格,其中有些格子是黑色的,现在需要求出从左上角到右下角不经过黑色格子的方案数(模 \(1 ...

  10. em和i , b和Strong 的区别

    这两对标签最大区别就是一个给搜索引擎看的,一个是给用户看的. b标签和strong标签给我们的主观感受都是加粗,但对搜索引擎来说b标签和普通的文字并没有什么区别,而strong标签却是起强调作用的. ...