BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数
$\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子
$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \left| \mu(i) \right |$
然后就成了计算$\left| \mu(i) \right |$ 的前缀和?
但是貌似不太可能啊 然后我们重新考虑容斥。
发现最终的结果 s=一个质数平方的倍数-两个质数乘积平方的倍数-三个的-五个的+6个的
发现系数和$\mu$一样,然后就可以枚举d进行计算了
$$\sum_{d^2<=n}\mu(d)*\lfloor {n/d^2} \rfloor$$
貌似就可以了
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (ll i=j;i<=k;++i)
#define D(i,j,k) for (ll i=j;i>=k;--i)
#define ll long long
#define maxn 100005
int vis[maxn],mu[maxn],pr[maxn],top=0;
void init()
{
mu[1]=1;
F(i,2,maxn-1)
{
if (!vis[i]) vis[i]=1,pr[++top]=i,mu[i]=-1;
F(j,1,top)
{
if (i*pr[j]>=maxn) break;
vis[i*pr[j]]=1;
if (i%pr[j]==0){mu[i*pr[j]]=0;break;}
mu[i*pr[j]]=-mu[i];
}
}
} int t;ll k; ll test(ll n)
{
ll t=sqrt(n),ret=0;
F(i,1,t) ret+=mu[i]*(n/(i*i));
return ret;
} int main()
{
init();
scanf("%d",&t);
while (t--)
{
scanf("%lld",&k);
ll l=0,r=30000000000LL;
while (l<r)
{
ll mid=(l+r)>>1;
if (test(mid)>=k) r=mid;
else l=mid+1;
}
printf("%lld\n",r);
}
}
BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数的更多相关文章
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】
二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...
- bzoj 2440: [中山市选2011]完全平方数
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...
随机推荐
- ssh框架出现Java.lang.NoSuchMethodError: antlr.collections.AST.getLine()I错误
原因:因为Struts自带的antlr-2.7.2.jar,比Hibernate自带的antlr-2.7.7.jar的版本要低,存在jar包冲突现象,因此要删除前一个低版本的. 由于myeclipse ...
- DrawerLayout Demo
源码下载:http://download.csdn.net/detail/bx276626237/8882763
- Alpha-beta pruning
function alphabeta(node, depth, α, β, maximizingPlayer) or node is a terminal node return the heuris ...
- Python 学习日志9月19日
9月19日 周二 今天是普通的一天,昨天也是普通的一天,刚才我差点忘记写日志,突然想起来有个事情没做,回来写. 今天早晨学习<Head First HTML and CSS>第十一章节“布 ...
- c#写出乘法口诀
显然是显得无聊五分钟写的乘法口诀 static void Main(string[] args) { int dq; int[] array ...
- 爬虫_python3_requests
Requests 网络资源(URLs)撷取套件 改善Urllib2的缺点,让使用者以最简单的方式获取网络资源 可以使用REST操作(POST,PUT,GET,DELETE)存取网络资源 import ...
- 科普NDIS封包过滤
闲言: 这个月一直在学习NDIS驱动编程,杂七杂八的资料都看个遍了,做了点笔记,捋捋思路,发上来备忘. Ps:只是小菜的一点学习笔记,没什么技术含量,不过版主如果觉得对大家稍微有点帮助的话 ...
- ios软件设计中注意点
1.取消系统自带渲染效果 2.取消屏幕旋转 3.项目中搜索丢失文件
- PLAYGROUND 延时运行
PLAYGROUND 延时运行 由 王巍 (@ONEVCAT) 发布于 2015/09/16 从 WWDC 14 的 Keynote 上 Chris 的演示就能看出 Playground 异常强大,但 ...
- 【dp 贪心】bzoj4391: [Usaco2015 dec]High Card Low Card
巧妙的贪心 Description Bessie the cow is a huge fan of card games, which is quite surprising, given her l ...