BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数
$\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子
$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \left| \mu(i) \right |$
然后就成了计算$\left| \mu(i) \right |$ 的前缀和?
但是貌似不太可能啊 然后我们重新考虑容斥。
发现最终的结果 s=一个质数平方的倍数-两个质数乘积平方的倍数-三个的-五个的+6个的
发现系数和$\mu$一样,然后就可以枚举d进行计算了
$$\sum_{d^2<=n}\mu(d)*\lfloor {n/d^2} \rfloor$$
貌似就可以了
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (ll i=j;i<=k;++i)
#define D(i,j,k) for (ll i=j;i>=k;--i)
#define ll long long
#define maxn 100005
int vis[maxn],mu[maxn],pr[maxn],top=0;
void init()
{
mu[1]=1;
F(i,2,maxn-1)
{
if (!vis[i]) vis[i]=1,pr[++top]=i,mu[i]=-1;
F(j,1,top)
{
if (i*pr[j]>=maxn) break;
vis[i*pr[j]]=1;
if (i%pr[j]==0){mu[i*pr[j]]=0;break;}
mu[i*pr[j]]=-mu[i];
}
}
} int t;ll k; ll test(ll n)
{
ll t=sqrt(n),ret=0;
F(i,1,t) ret+=mu[i]*(n/(i*i));
return ret;
} int main()
{
init();
scanf("%d",&t);
while (t--)
{
scanf("%lld",&k);
ll l=0,r=30000000000LL;
while (l<r)
{
ll mid=(l+r)>>1;
if (test(mid)>=k) r=mid;
else l=mid+1;
}
printf("%lld\n",r);
}
}
BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数的更多相关文章
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】
二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...
- bzoj 2440: [中山市选2011]完全平方数
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...
随机推荐
- svn亲笔操作
1. 创建版本库 [root@iZ28dftuhfaZ db]# svnadmin create /var/svn-repositories/app-api/ . 导入数据到你的版本库[root@iZ ...
- java冒泡排序和快速排序代码
冒泡排序: package nicetime.com; //基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,// 让较大的数往下沉,较小的往上 ...
- RMQ求区间最大最小值
#include<iostream> #include<cmath> #include<cstdio> #define N 50005 using namespac ...
- 2、Task 使用 ContinueWith 而不要使用 Wait
1.线程自旋:在阻塞线程的时候为了等待解锁(访问临界资源)(Sleep). 2.上下文切换:将处理器当前线程的状态保存到操作系统内部的线程对象中,然后再挑出一个就绪的线程,把上下文信息传递给处理器,然 ...
- remote: Incorrect username or password ( access token ) fatal: Authentication failed for
gitee推送到远程仓库时提示错误remote: Incorrect username or password ( access token )fatal: Authentication failed ...
- Java形式参数和返回值的问题
形式参数和返回值的问题 (1).形式参数: A.类名:需要该类的对象. B.抽象类名:需要该类的子类对象. C.接口名:需要该接口的实现类对象. A.类名作为形式参数 class Student { ...
- iPhone Scrollbars with iScroll
Since we've had web browsers and JavaScript, we've been intent on replacing native browser functiona ...
- ios之UIPopoverController
UIPopoverController是iPad上的iOS开发会常用到的一个组件(在iPhone设备上不允许使用),这个组件上手很简单,因为他的显示方法很少,而且参数简单,但我在使用过程中还常碰到各种 ...
- Codeforces Round #510 #A
http://codeforces.com/contest/1042/problem/A 题目大意就是: 现在公园里有n个长椅(要多长有多长),第i个长椅上有a[i]个人(泰山崩于前而不乱),现在又有 ...
- C++系统学习之三:向量
标准库类型vector 定义:vector表示对象的集合,其中所有对象的类型都相同. 访问方式:索引 头文件:<vector> 本质:类模板 NOTE: 模板本身不是类或函数,相反可以将模 ...