题目链接:

题意:

一快屏幕分非常多区域,区域之间能够相互覆盖,要覆盖就把属于自己的地方所有覆盖。

给出这块屏幕终于的位置。看这块屏幕是对的还是错的。。

思路:

拓扑排序,这个简化点说,就是说跟楚河汉界一样。。分的清清楚楚,要么这块地方是我的,要么这块地方是你的,不纯在一人一办的情况,所以假设排序的时候出现了环,那么就说这快屏幕是坏的。。

。另一点细节要注意的是第i个数字究竟属于第几行第几列。所以这个要发现规律,然后一一枚举就能够了。。

题目:

Window Pains
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1588   Accepted: 792

Description

Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows
and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux's windows would be represented by the following 2 x 2 windows:

1 1 . .
1 1 . .
. . . .
. . . .
. 2 2 .
. 2 2 .
. . . .
. . . .
. . 3 3
. . 3 3
. . . .
. . . .
. . . .
4 4 . .
4 4 . .
. . . .
. . . .
. 5 5 .
. 5 5 .
. . . .
. . . .
. . 6 6
. . 6 6
. . . .
. . . .
. . . .
7 7 . .
7 7 . .
. . . .
. . . .
. 8 8 .
. 8 8 .
. . . .
. . . .
. . 9 9
. . 9 9

When Boudreaux brings a window to the foreground, all of its squares come to the top, overlapping any squares it shares with other windows. For example, if window 1and then window 2 were brought to the foreground, the resulting representation
would be:

1 2 2 ?

1 2 2 ?
? ? ? ?

? ?

? ?

If window 4 were then brought to the foreground:
1 2 2 ?
4 4 2 ?

4 4 ? ?

?

? ? ?

. . . and so on . . . 

Unfortunately, Boudreaux's computer is very unreliable and crashes often. He could easily tell if a crash occurred by looking at the windows and seeing a graphical representation that should not occur if windows were being brought to the foreground correctly.
And this is where you come in . . .

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets. 



A single data set has 3 components:

  1. Start line - A single line: 

    START
  2. Screen Shot - Four lines that represent the current graphical representation of the windows on Boudreaux's screen. Each position in this 4 x 4 matrix will represent the current piece of window showing in each square. To make input easier, the list of numbers
    on each line will be delimited by a single space.
  3. End line - A single line: 

    END

After the last data set, there will be a single line: 

ENDOFINPUT 



Note that each piece of visible window will appear only in screen areas where the window could appear when brought to the front. For instance, a 1 can only appear in the top left quadrant.

Output

For each data set, there will be exactly one line of output. If there exists a sequence of bringing windows to the foreground that would result in the graphical representation of the windows on Boudreaux's screen, the output will be a single line with the statement: 



THESE WINDOWS ARE CLEAN 



Otherwise, the output will be a single line with the statement: 

THESE WINDOWS ARE BROKEN 


Sample Input

START
1 2 3 3
4 5 6 6
7 8 9 9
7 8 9 9
END
START
1 1 3 3
4 1 3 3
7 7 9 9
7 7 9 9
END
ENDOFINPUT

Sample Output

THESE WINDOWS ARE CLEAN
THESE WINDOWS ARE BROKEN

Source

代码为:

#include<cstdio>
#include<iostream>
#include<vector>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn=5+10;
int map[maxn][maxn],in[maxn]; queue<int>Q;
vector<int>vec[maxn];
int dx[]={0,0,1,1};
int dy[]={0,1,0,1}; int topo()
{
int sum=9;
while(!Q.empty()) Q.pop();
for(int i=1;i<=9;i++)
{
if(in[i]==0)
Q.push(i);
}
while(!Q.empty())
{
int temp=Q.front();
Q.pop();
sum--;
for(int i=0;i<vec[temp].size();i++)
{
if(--in[vec[temp][i]]==0)
Q.push(vec[temp][i]);
}
}
if(sum>0) return 0;
else return 1;
} void init()
{
char str[10];
for(int i=1;i<=9;i++)
{
vec[i].clear();
in[i]=0;
}
for(int i=1;i<=9;i++)
{
int x=(i-1)/3+1;
int y=i%3==0? 3:i%3;
for(int j=0;j<=3;j++)
{
int tx=x+dx[j];
int ty=y+dy[j];
if(map[tx][ty]!=i)
{
vec[i].push_back(map[tx][ty]);
in[map[tx][ty]]++;
}
}
}
scanf("%s",str);
} void solve()
{
int ans=topo();
if(ans)
cout<<"THESE WINDOWS ARE CLEAN"<<endl;
else
cout<<"THESE WINDOWS ARE BROKEN"<<endl;
} int main()
{
char str[10];
while(~scanf("%s",str))
{
if(strcmp(str,"ENDOFINPUT")==0) return 0;
for(int i=1;i<=4;i++)
for(int j=1;j<=4;j++)
scanf("%d",&map[i][j]);
init();
solve();
}
return 0;
}

pojWindow Pains(拓扑排序)的更多相关文章

  1. POJ 2585.Window Pains 拓扑排序

    Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1888   Accepted: 944 Descr ...

  2. 【POJ 2585】Window Pains 拓扑排序

    Description . . . and so on . . . Unfortunately, Boudreaux's computer is very unreliable and crashes ...

  3. POJ2585 Window Pains 拓扑排序

    Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1843   Accepted: 919 Descr ...

  4. POJ 2585:Window Pains(拓扑排序)

    Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2524   Accepted: 1284 Desc ...

  5. ACM/ICPC 之 拓扑排序范例(POJ1094-POJ2585)

    两道拓扑排序问题的范例,用拓扑排序解决的实质是一个单向关系问题 POJ1094(ZOJ1060)-Sortng It All Out 题意简单,但需要考虑的地方很多,因此很容易将code写繁琐了,会给 ...

  6. [poj2585]Window Pains_拓扑排序

    Window Pains poj-2585 题目大意:给出一个4*4的方格表,由9种数字组成.其中,每一种数字只会出现在特定的位置,后出现的数字会覆盖之前在当前方格表内出现的.询问当前给出的方格表是否 ...

  7. 算法与数据结构(七) AOV网的拓扑排序

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  8. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  9. 【BZOJ-2938】病毒 Trie图 + 拓扑排序

    2938: [Poi2000]病毒 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 609  Solved: 318[Submit][Status][Di ...

随机推荐

  1. linux 11201(11203) ASM RAC 安装

    注意:11G的RAC安装,如果升级,则会新建目录在放软件,原来的不删除,所以所需空间比较大. 1.安装系统,把所有的开发包全部安装上 关掉防火墙和SELinux yum -y install comp ...

  2. Android(java)学习笔记201:JNI之helloword案例(利用NDK工具)

    1. 逻辑思路过程图: 2.下面通过一个HelloWorld案例来说明一下JNI利用NDK开发过程(步骤) 分析:我们在Win7系统下编译的C语言代码,我们知道C语言依赖操作系统,不能跨平台,所以我们 ...

  3. java将字段映射成另一个字段,关于 接口传参 字段不对应转换

    在接口开发中我们经常会遇到一个问题,打个比方,我们的实体类A中有两个字段user和pwd但是接口中需要username和password这怎么办呢,我想到了两种方法:1.新创建一个实体类B或者new一 ...

  4. bzip2 一种块排序文件压缩软件

    总览 bzip2 [ -cdfkqstvzVL123456789 ] [ filenames ... ] bunzip2 [ -fkvsVL ] [ filenames ... ] bzcat [ - ...

  5. 【原】jq简易教程

    https://www.jianshu.com/p/3522fe70de19 https://www.jianshu.com/p/6de3cfdbdb0e 1. jq简介 jq可以对json数据进行分 ...

  6. PHP 下基于 php-amqp 扩展的 RabbitMQ 简单用例 (四) -- Push API 和 Pull API

    RabbitMQ 中针对消息的分发提供了 Push API (订阅模式) 和 Pull API (主动获取) 两种模式. 在 PHP 中, 这两种模式分别通过 AMQPQueue 类中的 consum ...

  7. JVM优化(上)

    02.我们为什么要对jvm做优化: 1.标准参数:-help-version 2. -X参数(非标) -Xint-Xcomp -Xint : interpreted-Xcomp: complied   ...

  8. js 技巧 (一)

      · 事件源对象 event.srcElement.tagName event.srcElement.type · 捕获释放event.srcElement.setCapture();  event ...

  9. Buffer.isBuffer()详解

    Buffer.isBuffer(obj) obj {Object} 返回:{Boolean} 如果 obj 是一个 Buffer 则返回 true.

  10. matplotlib.pyplot.pcolormesh

     matplotlib.pyplot.pcolormesh(*args, alpha=None, norm=None, cmap=None, vmin=None, vmax=None, shading ...