假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string。如aba,或者abba。本题是这种,给定输入一个字符串。要求输出一个子串,使得子串是最长的padromic string。

下边提供3种思路

1.两側比較法

以abba这样一个字符串为例来看,abba中,一共同拥有偶数个字。第1位=倒数第1位。第2位=倒数第2位......第N位=倒数第N位

以aba这样一个字符串为例来看,aba中。一共同拥有奇数个字符。排除掉正中间的那个字符后,第1位=倒数第1位......第N位=倒数第N位

所以,如果找到一个长度为len1的子串后,我们接下去測试它是否满足,第1位=倒数第1位。第2位=倒数第2位......第N位=倒数第N位。也就是说,去測试从头尾到中点,字符是否逐一相应相等。

public class LongestPalindromicSubString1 {

	/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(longestPalindrome1("babcbabcbaccba"));
} public static String longestPalindrome1(String s) { int maxPalinLength = 0;
String longestPalindrome = null;
int length = s.length(); // check all possible sub strings
for (int i = 0; i < length; i++) {
for (int j = i + 1; j < length; j++) {
int len = j - i;
String curr = s.substring(i, j + 1);
if (isPalindrome(curr)) {
if (len > maxPalinLength) {
longestPalindrome = curr;
maxPalinLength = len;
}
}
}
} return longestPalindrome;
} public static boolean isPalindrome(String s) { for (int i = 0; i < s.length() - 1; i++) {
if (s.charAt(i) != s.charAt(s.length() - 1 - i)) {
return false;
}
} return true;
}
}
</span>

 2.动态规划法

如果dp[ i ][ j ]的值为true,表示字符串s中下标从 i 到 j 的字符组成的子串是回文串。那么能够推出:

    dp[ i ][ j ] = dp[ i + 1][ j - 1] && s[ i ] == s[ j ]。

    这是一般的情况,因为须要依靠i+1, j -1,所以有可能 i + 1 = j -1, i +1 = (j - 1) -1,因此须要求出基准情况才干套用以上的公式:

    a. i + 1 = j -1,即回文长度为1时,dp[ i ][ i ] = true;

    b. i +1 = (j - 1) -1,即回文长度为2时,dp[ i ][ i + 1] = (s[ i ] == s[ i + 1])。

    有了以上分析就能够写出代码了。

须要注意的是动态规划须要额外的O(n2)的空间。

public class LongestPalindromicSubString2 {

	public static String longestPalindrome2(String s) {
if (s == null)
return null; if(s.length() <=1)
return s; int maxLen = 0;
String longestStr = null; int length = s.length(); int[][] table = new int[length][length]; //every single letter is palindrome
for (int i = 0; i < length; i++) {
table[i][i] = 1;
}
printTable(table); //e.g. bcba
//two consecutive same letters are palindrome
for (int i = 0; i <= length - 2; i++) {
//System.out.println("i="+i+" "+s.charAt(i));
//System.out.println("i="+i+" "+s.charAt(i+1));
if (s.charAt(i) == s.charAt(i + 1)){
table[i][i + 1] = 1;
longestStr = s.substring(i, i + 2);
}
}
System.out.println(longestStr);
printTable(table);
//condition for calculate whole table
for (int l = 3; l <= length; l++) {
for (int i = 0; i <= length-l; i++) {
int j = i + l - 1;
if (s.charAt(i) == s.charAt(j)) {
table[i][j] = table[i + 1][j - 1];
if (table[i][j] == 1 && l > maxLen)
longestStr = s.substring(i, j + 1); } else {
table[i][j] = 0;
}
printTable(table);
}
} return longestStr;
}
public static void printTable(int[][] x){
for(int [] y : x){
for(int z: y){
//System.out.print(z + " ");
}
//System.out.println();
}
//System.out.println("------");
}
public static void main(String[] args) {
System.out.println(longestPalindrome2("1263625"));//babcbabcbaccba
}
}</span>

3.中心扩展法

由于回文字符串是以中心轴对称的,所以假设我们从下标 i 出发。用2个指针向 i 的两边扩展推断是否相等,那么仅仅须要对0到

n-1的下标都做此操作,就能够求出最长的回文子串。但须要注意的是,回文字符串有奇偶对称之分,即"abcba"与"abba"2种类型。

因此须要在代码编写时都做推断。

     设函数int Palindromic ( string &s, int i ,int j) 是求由下标 i 和 j 向两边扩展的回文串的长度,那么对0至n-1的下标。调用2次此函数:

     int lenOdd =  Palindromic( str, i, i ) 和 int lenEven = Palindromic (str , i , j ),就可以求得以i 下标为奇回文和偶回文的子串长度。

接下来以lenOdd和lenEven中的最大值与当前最大值max比較就可以。

     这种方法有一个优点是时间复杂度为O(n2),且不须要使用额外的空间。

public class LongestPalindromicSubString3 {
public static String longestPalindrome(String s) {
if (s.isEmpty()) {
return null;
}
if (s.length() == 1) {
return s;
}
String longest = s.substring(0, 1);
for (int i = 0; i < s.length(); i++) {
// get longest palindrome with center of i
String tmp = helper(s, i, i);
if (tmp.length() > longest.length()) {
longest = tmp;
} // get longest palindrome with center of i, i+1
tmp = helper(s, i, i + 1);
if (tmp.length() > longest.length()) {
longest = tmp;
}
}
return longest;
} // Given a center, either one letter or two letter,
// Find longest palindrome
public static String helper(String s, int begin, int end) {
while (begin >= 0 && end <= s.length() - 1
&& s.charAt(begin) == s.charAt(end)) {
begin--;
end++;
}
String subS = s.substring(begin + 1, end);
return subS;
} public static void main(String[] args) {
System.out.println(longestPalindrome("ABCCBA"));//babcbabcbaccba
}
}</span>

Java Longest Palindromic Substring(最长回文字符串)的更多相关文章

  1. 转载-----Java Longest Palindromic Substring(最长回文字符串)

    转载地址:https://www.cnblogs.com/clnchanpin/p/6880322.html 假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic st ...

  2. Longest Palindromic Substring (最长回文字符串)——两种方法还没看,仍需认真看看

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  3. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  4. 1. Longest Palindromic Substring ( 最长回文子串 )

    要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...

  5. lintcode :Longest Palindromic Substring 最长回文子串

    题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...

  6. 【LeetCode】5. Longest Palindromic Substring 最长回文子串

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...

  7. [LeetCode] Longest Palindromic Substring 最长回文串

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  8. LeetCode:Longest Palindromic Substring 最长回文子串

    题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  9. 【翻译】Longest Palindromic Substring 最长回文子串

    原文地址: http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-i.html 转载请注明出处:http:// ...

随机推荐

  1. bzip2 一种块排序文件压缩软件

    总览 bzip2 [ -cdfkqstvzVL123456789 ] [ filenames ... ] bunzip2 [ -fkvsVL ] [ filenames ... ] bzcat [ - ...

  2. 解决docker pull镜像速度慢的问题

    直接下载Docker镜像时,由于种种原因,经常下载失败,即使连接成功也是很慢,怎么办呢 目前我知道可以提升速度的办法:DaoCloud 提供Docker Hub Mirror服务 用户可以进入Dock ...

  3. _bbox_pred函数

    fast中的_bbox_pred函数和faster中的bbox_transform_inv是一样的,是将框进行4个坐标变换得到新的框坐标.fast中是将selective search生成的框坐标进行 ...

  4. B1. Concurrent 多线程的创建

    [概述] 多线程的创建常用的有两种方法:1). 继承 Thread 类: 2). 实现 Runnable 接口: 3). 实现 Callable 接口. [继承 Thread 类] /** * 1. ...

  5. yii1框架,事务使用方法

    Yii1框架事务操作方法如下: $transaction= Yii::app()->db->beginTransaction();//创建事务 $transaction->commi ...

  6. 源码学习-String类

    最近在扫描CodeDex时报了一个不能使用String.intern()的字符串来做锁对象的告警,对这个问题有疑问查了些资料,顺便学习一下String类的源码. 1.类定义 String 被final ...

  7. assert.throws()函数详解

    assert.throws(block[, error][, message]) Node.js FS模块方法速查 期望 block 函数抛出一个错误. 如果指定 error,它可以是一个构造函数.正 ...

  8. <struct、union、enum>差异

    关于C++和C的区别 区别最大的是struct,C++中的struct几乎和class一样了,可以有成员函数,而C中的struct只能包含成员变量. enum,union没区别. struct的定义 ...

  9. noi.ac NOIP2018 全国热身赛 第二场 T1 ball

    [题解] 可以发现每次推的操作就是把序列中每个数变为下一个数,再打一个减一标记:而每次加球的操作就是把球的位置加上标记,再插入到合适的位置. 用set维护即可. #include<cstdio& ...

  10. eclipse导入项目时报错不能运行问题的一个记录

    一直用学校的云桌面,但是还是有一些地方不是很方便,必须要校园网以及需要离线保存: 碰到的问题:重新安装和云桌面一样版本的jdk9.0.4,以及tomcat9.0.12,以及eclipse-oxygen ...