[ CQOI 2018 ] 异或序列
\(\\\)
Description
给出一个长为 \(n\) 的数列 \(A\) 和 \(k\),多次询问:
对于一个区间 \([L_i,R_i]\),问区间内有多少个不为空的子段异或和为 \(k\) 。
- \(n,m,k,A_i\le 10^5\)
\(\\\)
Solution
注意到一件有趣的事,就是每次询问的 \(k\) 相同。
因为 \(a\oplus a=0\),所以子段异或问题可以看作前缀异或和的异或,即
\]
其中 \(sum[i]=a[1]\oplus a[2]\oplus...\oplus a[i]\) 。
那么问题转化为,存在对少对 \(i,j\in[L_i-1,R_i],i!=j\) ,满足
\]
注意区间问题,因为区间做差的原理是减掉 \(l-1\) 。
然后可以注意到,一个值 \(x\) 若想要构成 \(k\) ,其对应的另一个值是固定的。
也就是说,我们的组合方案是确定的。
当新加入一个可选值 \(x\) ,我们的方案数就会 \(+cnt[x^k]\) ,其中 \(cnt[i]\) 表示当前含有可选值 \(i\) 的个数。
可以证明,这种计数方式不会算重,因为每个数字加入时只会计算当前已经有对应的值。
当去掉一个值的时候,方案数 \(-cnt[x^k]\) 即可。
\(\\\)
还有一个问题,就是关于 \(k=0\) 的情况。
此时每个值显然不能计算上自己和自己异或的贡献。
删除时当然也要注意不能多减掉自己异或自己的情况。
只需在 add 和 del 的时候交换一下操作顺序即可,具体看代码。
\(\\\)
Code
突然失智......Debug 2h 竟只是因为 \(l\) 没有减 \(1\) ......
还要注意,刚开始 \(0\) 号位置也有一个贡献。
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 100010
#define R register
#define gc getchar
using namespace std;
typedef long long ll;
inline ll rd(){
ll x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
ll n,m,k,ans,bl[N],cnt[1<<18],s[N],res[N];
struct Q{ll l,r,id;}q[N];
inline bool cmp1(Q x,Q y){
return bl[x.l]==bl[y.l]?x.r<y.r:bl[x.l]<bl[y.l];
}
inline bool cmp2(Q x,Q y){return x.id<y.id;}
inline void del(int p){
--cnt[s[p]];
ans-=cnt[k^s[p]];
}
inline void add(int p){
ans+=cnt[k^s[p]];
++cnt[s[p]];
}
int main(){
n=rd(); m=rd(); k=rd();
ll t=sqrt(n);
for(R ll i=1;i<=n;++i){
s[i]=s[i-1]^rd();
bl[i]=i/t+1;
}
for(R ll i=1;i<=m;++i){
q[i].l=rd()-1; q[i].r=rd(); q[i].id=i;
}
sort(q+1,q+1+m,cmp1);
ll nowl=0,nowr=0;
cnt[0]=1;
for(R ll i=1;i<=m;++i){
while(nowl>q[i].l){--nowl;add(nowl);}
while(nowl<q[i].l){del(nowl);++nowl;}
while(nowr<q[i].r){++nowr;add(nowr);}
while(nowr>q[i].r){del(nowr);--nowr;}
res[q[i].id]=ans;
}
for(R ll i=1;i<=m;++i) printf("%lld\n",res[i]);
return 0;
}
[ CQOI 2018 ] 异或序列的更多相关文章
- [CQOI 2018]异或序列&[Codeforces 617E]XOR and Favorite Number
Description 题库链接1 题库链接2 已知一个长度为 \(n\) 的整数数列 \(a_1,a_2,\cdots,a_n\) ,给定查询参数 \(l,r\) ,问在 \([l,r]\) 区间内 ...
- bzoj 5301: [Cqoi2018]异或序列 (莫队算法)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...
- 「luogu4462」[CQOI2018] 异或序列
「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...
- P3917 异或序列
P3917 异或序列暴力前缀异或枚举每一个区间,再求和,60分.正解:按每一位来做对于区间[l,r],如果它对答案有贡献,区间中1的个数一定是奇数,可以按每一位取(1<<i)的前缀和,q[ ...
- bzoj 5301 [Cqoi2018]异或序列 莫队
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 204 Solved: 155[Submit][Status ...
- BZOJ5301: [Cqoi2018]异或序列(莫队)
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 400 Solved: 291[Submit][Status ...
- Loj 2534 异或序列
Loj 2534 异或序列 考虑莫队离线处理.每加一个数,直接询问 \(a[x]\oplus k\) 的前/后缀数目即可,减同理. 利用异或的优秀性质,可以维护异或前缀和,容易做到每次 \(O(1)\ ...
- 【BZOJ5301】【CQOI2018】异或序列(莫队)
[BZOJ5301][CQOI2018]异或序列(莫队) 题面 BZOJ 洛谷 Description 已知一个长度为 n 的整数数列 a[1],a[2],-,a[n] ,给定查询参数 l.r ,问在 ...
- [bzoj5301][Cqoi2018]异或序列_莫队
异或序列 bzoj-5301 Cqoi-2018 题目大意:题目链接. 注释:略. 想法: 由于a^a=0这个性质,我们将所有的数变成异或前缀和. 所求就变成了求所有的$l_i\le x<y\l ...
随机推荐
- Educational Codeforces Round 10 D. Nested Segments
D. Nested Segments time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- NSDictionary字典创建,获取,遍历,可变字典的删除 - iOS
字典是以键值对的形式来存储数据 key value 1 NSDictionary 字典 1.1 创建字典,不可变的 NSDictionary * dic = [NSDictionary diction ...
- codeforces 450C. Jzzhu and Chocolate 解题报告(449A)
题目链接:http://codeforces.com/contest/450/problem/C 题目意思:给出一个 n * m 大小的chocolate bar,你需要在这个bar上切 k 刀,使得 ...
- 一步一步学Silverlight 2系列(13):数据与通信之WebRequest
概述 Silverlight 2 Beta 1版本发布了,无论从Runtime还是Tools都给我们带来了很多的惊喜,如支持框架语言Visual Basic, Visual C#, IronRuby, ...
- 【矩阵---求A的1到N次幂之和】
引例: Matrix Power Series: 题目大意,给定矩阵A,求A^+A^+A^+...A^N. 题解:已知X=a,可以通过以下矩阵求出ans=a^+a^+...a^=矩阵^(n+)后右上格 ...
- Android Studio手动下载配置Gradle的方法
1 问题 (1) android sutdio第一次打开一个工程巨慢怎么办? (2) 手动配置Gradle Home为什么总是无效? (3) 明明已经下载了Gradle,配置了gradle home, ...
- JAVA线程同步 (三)信号量
一个信号量有且仅有3种操作,且它们全部是原子的:初始化.增加和减少 增加可以为一个进程解除阻塞: 减少可以让一个进程进入阻塞. 信号量维护一个许可集,若有必要,会在获得许可之前阻塞每一个线程: ...
- 【转】 IntelliJ IDEA 中 Project 和 Module 的概念及区别
原文地址:https://blog.csdn.net/qq_35246620/article/details/65448689 在 IntelliJ IDEA 中,没有类似于 Eclipse 工作空间 ...
- Ubuntu安装eclipse以及创建快捷方式
1. 安装jdk,我用的1.8,很简单这里不详细说了: 2.下载eclipse的安装包, https://www.eclipse.org/downloads/download.php?file=/te ...
- 怎样在github上协同开发
How to co-work wither parter via github. Github协同开发情景模拟 Github不仅有很多开源的项目可以参考,同样也是协同开发的最佳工具,接下来的就模拟一下 ...