P1482 Cantor表(升级版)
题目描述
现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:
1/1 1/2 1/3 1/4 1/5 …
2/1 2/2 2/3 2/4 …
3/1 3/2 3/3 …
4/1 4/2 …
5/1 …
… 这次与NOIp1999第一题不同的是:这次需输入两个分数(不一定是最简分数),算出这两个分数的积(注意该约分的要约分)后输出积在原表的第几列第几行(若积是整数或1/积,则以“积/1”或“1/积”结算)。
输入输出格式
输入格式:
共两行。每行输入一个分数(不一定是最简分数)。
输出格式:
两个整数,表示输入的两个分数的积在表中的第几列第几行,注意该约分的要约分。
输入输出样例
4/5
5/4
1 1
说明
所有数据:两个分数的分母和分子均小于10000
求一个gcd,注意输出顺序是,先列,后行、
#include<iostream>
#include<cstdio>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;
int x1,x2;
int y11,y2;
long long a,b;
long long yue;
void gcd(long long a,long long b)
{
if(b==)
{
yue=a;
return;
}
gcd(b,a%b);
return ;
}
int main()
{
char c;
cin>>x1>>c>>x2;
cin>>y11>>c>>y2;
a=1LL*x1*y11; b=1LL*x2*y2;
gcd(a,b);
a=a/yue;b=b/yue;
printf("%lld %lld",b,a);
return ;
}
P1482 Cantor表(升级版)的更多相关文章
- 洛谷P1482 Cantor表(升级版) 题解
题目传送门 此题zha一看非常简单. 再一看特别简单. 最后瞟一眼,还是很简单. 所以在此就唠一下GCD大法吧: int gcd(int x,int y){ if(x<y) return gcd ...
- NOIP199904求Cantor表
求Cantor表 题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 ...
- wikioi 1083 Cantor表
题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 - 2/1 2/ ...
- Cantor表(NOIP1999)
题目链接:Cantor表 这道题很水,但有的人没看懂题意,这不怪大家,怪题目没说清楚. 给张图: 看到这,你应该明白题目意思了. 先看看有什么规律. 我把这个数列写出来: 1/1,1/2,2/1,3/ ...
- 14. Cantor表
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题解 查看运行结果 题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数 ...
- 洛谷——P1014 Cantor表
P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...
- 洛谷P1014 Cantor表
P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...
- 洛谷 P1014 Cantor表
P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...
- C语言程序设计100例之(3): Cantor表
例3 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 …… 2/1 ...
随机推荐
- BZOJ5379: Tree
BZOJ5379: Tree Description JudgeOnline/upload/201806/1.pdf 题解Here! 题目大意就是:1. 换根.2. 对$LCA(u,v)$的子树修改. ...
- 关于在PHP中当一个请求未完成时,再发起另一个请求被阻塞的问题
最近做项目的时候遇到个问题,就是做阿里云oss大文件上传进度条显示,因为要实时查询上传分片进度,所以在上传的同时必须要再发起查询的请求,但是一直都是所有分片上传完成后查询的请求才执行,刚开始以为是阿里 ...
- extjs4 treepanel 多个checkbox先中 多个节点选中 多级节点展开
//<%@ page contentType="text/html; charset=utf-8" %> var checkedNodes = { _data:{}, ...
- HDU2476 String painter —— 区间DP
题目链接:https://vjudge.net/problem/HDU-2476 String painter Time Limit: 5000/2000 MS (Java/Others) Me ...
- 织梦系统如何设置URL绝对路径及绝对路径的好处
今天,和大家分享下织梦系统如何设置URL绝对路径及绝对路径的好处,我的一些就是用的织梦系统,感觉织梦在SEO优化方面做的还是非常好的,至少在CMS系统中应该是做的最出色的吧!下面,我就先来讲下这个织梦 ...
- javascript XMLHttpRequest 对象的open() 方法参数说明
下文是从w3c上摘录下来的,其中参数 method 说明的很简短,不是很理解,所以又找了些资料作为补充.文中带括号部分. XMLHttpRequest.open() 初始化 HTTP 请求参数 语法o ...
- Apostrophe not preceded by \
编辑strings.xml的时候, <string name="start">Let's get started!</string> 报错说:“Apostr ...
- data对象转化成后端需要的json格式
data=JSON.stringify(json_data); $.ajax({type:'post',url:url+'warehouse/create_alliance_out/',data:da ...
- 使用Navicat连接MySQL出现1251错误
问题:navicat连接mysql时报错:1251-Client does not support authentication protocol requested by server; consi ...
- Spring配置错误 No adapter for IAdvice of type
参考:http://www.2cto.com/kf/201305/211728.html 错误十三 在配置拦截器后,运行的时候报错=> Error creating context 'sprin ...