Maximum Xor Secondary CodeForces - 281D (单调栈)
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x1, x2, ..., xk (k > 1) is such maximum element xj, that the following inequality holds: .
The lucky number of the sequence of distinct positive integers x1, x2, ..., xk (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence.
You've got a sequence of distinct positive integers s1, s2, ..., sn (n > 1). Let's denote sequence sl, sl + 1, ..., sr as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r].
Note that as all numbers in sequence s are distinct, all the given definitions make sence.
Input
The first line contains integer n (1 < n ≤ 105). The second line contains n distinct integers s1, s2, ..., sn (1 ≤ si ≤ 109).
Output
Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r].
Examples
Input
5
5 2 1 4 3
Output
7
Input
5
9 8 3 5 7
Output
15
Note
For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2].
For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
题意:
给你一个含有n个数的数组,让你找一个连续的区间,这个区间中的最大值异或上次大值得到的数值最大。
思路:
我们可以知道,一个数a[i] ,最多可以当两个区间的有效次大值
即a[i] 左边右边第一个比a[i] 大的数,与a[i] 构成的2个区间。
那么我们可以维护一个单调递减的单调栈,栈中每一个数 a[i] 左边的数就是数组中左边第一个比a[i]大的数,
把a[i] 从栈中弹出的数,就是 在数组中 a[i] 右边第一个比a[i] 大的数。
这样我们就可以把所有有效的区间中最大值和次大值都得出,更新答案即可。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
ll a[maxn];
stack<ll> st;
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n;
repd(i, 1, n) {
cin >> a[i];
}
ll ans = 0ll;
repd(i, 1, n) {
if (st.empty()) {
st.push(a[i]);
}else
{
while(st.size()&&st.top()<a[i])
{
ans=max(ans,(st.top()^a[i]));
st.pop();
}
if(st.size())
ans=max(ans,(st.top()^a[i]));
st.push(a[i]);
}
}
ll x;
if(st.size())
{
x=st.top();
st.pop();
}
while(st.size())
{
ans=max(ans,(x^st.top()));
x=st.top();
st.pop();
}
cout<<ans<<endl;
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Maximum Xor Secondary CodeForces - 281D (单调栈)的更多相关文章
- CodeForces 548D 单调栈
Mike and Feet Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u Subm ...
- Discrete Centrifugal Jumps CodeForces - 1407D 单调栈+dp
题意: 给你n个数hi,你刚开始在第1个数的位置,你需要跳到第n个数的位置. 1.对于i.j(i<j) 如果满足 max(hi+1,-,hj−1)<min(hi,hj) max(hi,hj ...
- Codeforces Round #172 (Div. 2) D. Maximum Xor Secondary 单调栈应用
http://codeforces.com/contest/281/problem/D 要求找出一个区间,使得区间内第一大的数和第二大的数异或值最大. 首先维护一个单调递减的栈,对于每个新元素a[i] ...
- Codeforces 1107G Vasya and Maximum Profit 线段树最大子段和 + 单调栈
Codeforces 1107G 线段树最大子段和 + 单调栈 G. Vasya and Maximum Profit Description: Vasya got really tired of t ...
- Codeforces 1107G Vasya and Maximum Profit [单调栈]
洛谷 Codeforces 我竟然能在有生之年踩标算. 思路 首先考虑暴力:枚举左右端点直接计算. 考虑记录\(sum_x=\sum_{i=1}^x c_i\),设选\([l,r]\)时那个奇怪东西的 ...
- Codeforces Round #305 (Div. 1) B. Mike and Feet 单调栈
B. Mike and Feet Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/547/pro ...
- Imbalanced Array CodeForces - 817D (思维+单调栈)
You are given an array a consisting of n elements. The imbalance value of some subsegment of this ar ...
- Codeforces 802I Fake News (hard) (SA+单调栈) 或 SAM
原文链接http://www.cnblogs.com/zhouzhendong/p/9026184.html 题目传送门 - Codeforces 802I 题意 求一个串中,所有本质不同子串的出现次 ...
- Educational Codeforces Round 23 D. Imbalanced Array 单调栈
D. Imbalanced Array time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
随机推荐
- 重点做EUR/USD、EUR/JPY、GBP/USD。
这三种货币对,几乎每天都有合适的行情.
- 安装horizon
在控制节点上安装 controllerHost='controller' ADMIN_PASSWD='Ideal123!' 1.安装dashboard组件 yum -y install opensta ...
- VAEs(变分自编码)之keras实践
VAEs最早由“Diederik P. Kingma and Max Welling, “Auto-Encoding Variational Bayes, arXiv (2013)”和“Danilo ...
- USACO 1.2 Friday the Thirteenth
注意闰月的部分细节很多. /* ID:Starry21 LANG:C++ TASK:friday */ #include<iostream> #include<string> ...
- sass与less对比学习
参考链接:https://blog.csdn.net/luluan_lin/article/details/83749176
- ActiveMQ配置详解
原文链接 一.消息目的地策略 在节点destinationPolicy配置策略,可以对单个或者所有的主题和队列进行设置,使用流量监控,当消息达到memoryLimit的时候,ActiveMQ会减慢消息 ...
- makefile中=、:=和+=的区别
经常有人分不清= .:=和+=的区别 这里我总结下做下详细的分析: 首先你得清楚makefile的运行环境,因为我是linux系统,那么我得运行环境是shell 在Linux的shell里,shel ...
- redis 慢查询、Pipeline
1.慢查询 简介 慢查询顾名思义是将redis执行命令较慢的命令记录下来,redis处理慢查询时是将慢查询记录到慢查询队列中 慢查询配置 slowlog-max-len 慢查询队列长度(记录多少条慢查 ...
- 【LOJ】#3030. 「JOISC 2019 Day1」考试
LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- ...
- ApplicationListener原理分析
在 Nacos配置服务原理 文中结束时提到过通过发布 ApplicationListener 刷新事件完成 Context 中属性值的更新.那么本章我们一起分析 ApplicationListener ...