0-1背包问题——回溯法求解【Python】
回溯法求解0-1背包问题:
问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大。
回溯法核心:能进则进,进不了则换,换不了则退。(按照条件深度优先搜索,搜到某一步时,发现不是最优或者达不到目标,则退一步重新选择)
注:理论上,回溯法是在一棵树上进行全局搜索,但是并非每种情况都需要全局考虑,毕竟那样效率太低,且通过约束+限界可以减少好多不必要的搜索。
解决本问题思路:使用0/1序列表示物品的放入情况。将搜索看做一棵二叉树,二叉树的第 i 层代表第 i 个物品,若剩余空间允许物品 i 放入背包,扩展左子树。若不可放入背包,判断限界条件,若后续继续扩展有可能取得最优价值,则扩展右子树(即此 i 物品不放入,但是考虑后续的物品)。在层数达到物品的个数时,停止继续扩展,开始回溯。
注:如何回溯呢?怎样得到的,怎样恢复。放入背包中的重量取出,加在bagV上的价值减去。
约束条件:放入背包中物品的总质量小于等于背包容量
限界条件:当前放入背包中物品的总价值(i及之前) + i 之后的物品总价值 < 已知的最优值 这种情况下就没有必要再进行搜索
数据结构: 用一个变量记录当前放入背包的总价值 bagV(已扩展),一个变量记录后续物品的总价值 remainV(未扩展),当前已得到的一种最优值 bestV(全局情况),一个用0/1表示的数组bestArr[]记录哪些物品放入了背包。
核心结构:递归思路进行解决。层层递归,递归到尽头,保留最优值,恢复递归中,层层回溯,即将原来加上去的重量与价值恢复。
# -*- coding:utf-8 -*- def Backtrack(t):
global bestV, bagW, bagV,arr, bestArr, cntV if t > n: #某次深度优先搜索完成
if bestV < bagV:
for i in range(1, n+1):
bestArr[i] = arr[i]
bestV = bagV
else: #深度优先搜索未完成
if bagW + listWV[t][0] <= w: #第t个物品可以放入到背包中,扩展左子树
arr[t] = True
bagW += listWV[t][0]
bagV += listWV[t][1]
Backtrack(t+1)
bagW -= listWV[t][0]
bagV -= listWV[t][1]
if cntV[t] + bagV > bestV: #有搜索下去的必要
arr[t] = False
Backtrack(t+1) if __name__ == '__main__': w = int(input()) #背包大小
n = int(input()) #物品个数 listWV = [[0,0]]
listTemp = []
sumW = 0
sumV = 0 for i in range(n):
listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加入到listWV中
sumW += listTemp[0]
sumV += listTemp[1]
listWV.append(listTemp) #依次输入每个物品的重量与价值 bestV = 0
bagW = 0
bagV = 0
remainV = sumV
arr = [False for i in range(n+1)]
bestArr = [False for i in range(n+1)] cntV = [0 for i in range(n+1)] #求得剩余物品的总价值,cnt[i]表示i+1~n的总价值
cntV[0] = sumV
for i in range(1, n+1):
cntV[i] = cntV[i-1] - listWV[i][1] if sumW <= w:
print(sumV)
else:
Backtrack(1)
print(bestV)
print(bestArr)
print(cntV)
检测:
10
5
2 6
5 3
4 5
2 4
3 6 17
[False, True, False, True, False, True]
[24, 18, 15, 10, 6, 0]
0-1背包问题——回溯法求解【Python】的更多相关文章
- 01背包问题(回溯法)python实现
接上一篇,相同的01背包问题,上一篇採用动态规划的方法,如今用回溯法解决. 回溯法採用深度优先策略搜索问题的解.不多说.代码例如以下: bestV=0 curW=0 curV=0 bestx=None ...
- 算法——八皇后问题(eight queen puzzle)之回溯法求解
八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- 回溯法求解n皇后和迷宫问题
回溯法是一种搜索算法,从某一起点出发按一定规则探索,当试探不符合条件时则返回上一步重新探索,直到搜索出所求的路径. 回溯法所求的解可以看做解向量(n皇后坐标组成的向量,迷宫路径点组成的向量等),所有解 ...
- 0-1背包问题蛮力法求解(c++版本)
// 0.1背包求解.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> #define ...
- 0-1背包问题蛮力法求解(java版本)
sloves: package BackPack; public class Solves { public int[] DecimaltoBinary(int n,int m) { int ...
- 回溯法——求解N皇后问题
问题描写叙述 八皇后问题是十九世纪著名数学家高斯于1850年提出的.问题是:在8*8的棋盘上摆放8个皇后.使其不能互相攻击,即随意的两个皇后不能处在允许行.同一列,或允许斜线上. 能够把八皇后问题拓展 ...
- n皇后问题(回溯法)——Python实现
八皇后问题 问题: 国际象棋棋盘是8 * 8的方格,每个方格里放一个棋子.皇后这种棋子可以攻击同一行或者同一列或者斜线(左上左下右上右下四个方向)上的棋子.在一个棋盘上如果要放八个皇后,使得她们互 ...
- Java实现动态规划法求解0/1背包问题
摘要: 使用动态规划法求解0/1背包问题. 难度: 初级 0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进 ...
随机推荐
- leetcode 374. Guess Number Higher or Lower 、375. Guess Number Higher or Lower II
374. Guess Number Higher or Lower 二分查找就好 // Forward declaration of guess API. // @param num, your gu ...
- 品优购商城项目(二)mybatis分页插件
品优购商城项目第二天,使用mybatis分页插件实现分页.主要实现的是 SSM整合mybatis分页. 一.引用mybatis分页插件 SqlMapConfig.xml <?xml versio ...
- Java socket详解
参考 https://www.jianshu.com/p/cde27461c226 刚给大家讲解Java socket通信后,好多童鞋私信我,有好多地方不理解,看不明白.特抽时间整理一下,详细讲述Ja ...
- 【FreeMarker】FreeMarker快速入门(一)
什么是 FreeMarker FreeMarker 是一款 模板引擎: 即一种基于模板和要改变的数据, 并用来生成输出文本(HTML网页,电子邮件,配置文件,源代码等)的通用工具. 它不是面向最终用户 ...
- 报错:org.apache.sqoop.common.SqoopException Message: CLIENT_0001:Server has returned exception NoClassDefFoundError: org/codehaus/jackson/map/JsonMappingException
报错背景: CDH集成sqoop2服务之后,创建好link和job之后,执行job的时候报错. 报错现象: sqoop:> start job -j Exception has occurred ...
- 使用mysqlslap测试MySQL性能
之前介绍过MySQL的性能测试工具sysbench, 这次介绍一个mysql自带的比较简单的性能测试命令mysqlslap. 下面的指令模拟了1000个进程同事连接mysql,并执行100个查询操作, ...
- IE浏览器提示打印控件未安装的一些原因
打印控件未安装!点击这里执行安装,安装后请刷新页面或重新进入.--该提示是写在LodopFuncs.js里的.相关本博客其他博文:提示“Web打印服务CLodop未安装启动”的各种原因和解决方法.C- ...
- mssql的update :from语法
一条Update更新语句是不能更新多张表的,除非使用触发器隐含更新.而表的更新操作中,在很多情况下需要在表达式中引用要更新的表以外的数据.我们先来讨论根据其他表数据更新你要更新的表 一.MS S ...
- linq list select用法注意事项
下面是我自己做的一个例子 List<CR_CustomerOrder> OrdList = new List<CR_CustomerOrder>(); var b = OrdL ...
- Cas(04)——更改认证方式
在Cas Server的WEB-INF目录下有一个deployerConfigContext.xml文件,该文件是基于Spring的配置文件,里面存放的内容常常是部署人员需要修改的内容.其中认证方式也 ...