题意

有\(n\)条线段,区间为\([l_i, r_i]\),每次询问\([x_i, y_i]\),问要被覆盖最少要用多少条线段。

思路

\(f[i][j]\)表示以\(i\)为左端点,用了\(2^j\)条线段,最远到哪里。

然后从大到小贪心即可,类似于倍增找LCA的过程。

代码

#include <bits/stdc++.h>
using namespace std; #define N 200010
#define M 500010
#define D 20
int n, q;
int l[N], r[N];
int f[M][D]; int work(int x, int y) {
int ans = 0;
for (int i = D - 1; i >= 0; --i) {
if (f[x][i] < y) {
x = f[x][i];
ans |= (1 << i);
}
}
x = f[x][0]; ++ans;
if (x < y) ans = -1;
return ans;
} int main() {
while (scanf("%d%d", &n, &q) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d%d", l + i, r + i);
++l[i], ++r[i];
}
memset(f, 0, sizeof f);
for (int i = 1; i <= n; ++i) {
f[l[i]][0] = max(f[l[i]][0], r[i]);
}
for (int i = 1; i < M; ++i) {
f[i][0] = max(f[i][0], max(i, f[i - 1][0]));
for (int j = 1; j < D; ++j) {
f[i][j] = max(f[i][j], max(f[i][j - 1], f[i - 1][j]));
}
} for (int j = 1; j < D; ++j) {
for (int i = 1; i < M; ++i) {
f[i][j] = max(f[i][j], f[f[i][j - 1]][j - 1]);
}
}
int x, y;
while (q--) {
scanf("%d%d", &x, &y);
++x, ++y;
printf("%d\n", work(x, y));
}
}
return 0;
}

Codeforces 1175E Minimal Segment Cover的更多相关文章

  1. CodeForces - 1175E Minimal Segment Cover (倍增优化dp)

    题意:给你n条线段[l,r]以及m组询问,每组询问给出一组[l,r],问至少需要取多少个线段可以覆盖[l,r]区间中所有的点. 如果贪心地做的话,可以求出“从每个左端点l出发选一条线段可以到达的最右端 ...

  2. CF1175E Minimal Segment Cover 题解

    题意:给出\(n\)个形如\([l,r]\)的线段.\(m\)次询问,每次询问区间\([x,y]\),问至少选出几条线段,使得区间\([x,y]\)的任何一个部位都被至少一条线段覆盖. 首先有一个显然 ...

  3. CF1175E Minimal Segment Cover

    题目链接 题意 给出n条线段.m次询问,每次询问给出一个区间\([l,r]\)问最少需要多少条线段才能覆盖区间\([l,r]\). 所有坐标\(\le 5\times 10^5\).\(n,m\le ...

  4. codeforces1175E Minimal Segment Cover 倍增

    题目传送门 题意:给出n条平行于x轴的线段,q次询问,每次询问一个区间最少要几条线段来覆盖,若不能覆盖则输出-1. 思路:先考虑贪心,必定是先找到,所有左端点小于等于$x$的线段的右端点最大在哪里,然 ...

  5. Codeforces 797C - Minimal string

    C. Minimal string 题目链接:http://codeforces.com/problemset/problem/797/C time limit per test 1 second m ...

  6. CodeForces 797C Minimal string:贪心+模拟

    题目链接:http://codeforces.com/problemset/problem/797/C 题意: 给你一个非空字符串s,空字符串t和u.有两种操作:(1)把s的首字符取出并添加到t的末尾 ...

  7. Codeforces 1092E Minimal Diameter Forest

    Minimal Diameter Forest 首先我们找出每个连通块中的特殊点, 特殊点的定义是到各种个连通块中距离的最大值最小的点, 每个连通块肯定通过特殊点连到其他连通块, 我们把有最大值的特殊 ...

  8. Codeforces 825E Minimal Labels - 拓扑排序 - 贪心

    You are given a directed acyclic graph with n vertices and m edges. There are no self-loops or multi ...

  9. Codeforces 1073 E - Segment Sum

    E - Segment Sum 思路: 数位dp 我们平时做的数位dp都是求满足条件的数的个数, 这里要求满足条件的数的和 只要在原来的基础上求每一位的贡献就可以了,所以传参数时要传两个 代码: #p ...

随机推荐

  1. Scratch技巧—-使用克隆技术实现菜单按钮

    昨天讲了克隆技术的一个具体应用:生成菜单按钮.有的小朋友迫不及待的试验了一下,发现菜单按钮是生成了,但是如何触发相应的按钮功能呢?触发功能的处理代码也是在克隆体里面实现哦.请看案例: 启动程序时,先隐 ...

  2. odoo——日历的一对多与多对一

    # model文件 # -*- coding: utf-8 -*- from odoo import api, fields, models class TodoTestYear(models.Mod ...

  3. 关于arm 的字节对齐

    一.什么是字节对齐,为什么要对齐? 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这 ...

  4. Apache2.4+Tomcat7.0+php5.5整合配置详解

    在上一篇的基础上,继续添加php的配置 一.首先下载php5.5 首先下载php5.5,到官网下载http://www.php.net/downloads.php,参考http://www.cnblo ...

  5. Abp SSO

    官方的文档有个坑. 首先建立的应该是 .net core  MPA版本. 把文档上的startup.cs配置写入 MVC 项目中. 这样测试才能通过.不然,测试项目     var disco = a ...

  6. sql 添加变量

    在sql语句中添加变量. declare @local_variable data_type 声明时需要指定变量的类型, 可以使用set和select对变量进行赋值, 在sql语句中就可以使用@loc ...

  7. Jmeter测试出现端口占用情况

    Jmeter测试会出现端口占用情况 这边在这里做个记录,每次都要百度查询,刚好需要整理下,我就也记录一份到这里吧.感谢大佬的文章. 参考文章:windows下Jmeter压测端口占用问题 因Windo ...

  8. Cascader 级联选择器无法赋值

    问题: html: <el-cascader v-model="addform.qxvalue" :options="options" :props=&q ...

  9. # 机器学习算法总结-第九天(XGboost)

  10. linux 基础12-程序与资源管理

    1. 基础概念 可执行的二进制文件就是程序 执行程序的时候因触发事件而获取的ID,称为PID 在登入并执行bash时,系统依据登录者的UID/GID给登录者一个PID/GPID/SID等 启动程序时, ...