Why do we name variables in Tensorflow?
Reference:Stack Overflow。
The name parameter is optional (you can create variables and constants with or without it), and the variable you use in your program does not depend on it. Names can be helpful in a couple of places:
When you want to save or restore your variables (you can save them to a binary file after the computation). From docs:
By default, it uses the value of the Variable.name property for each variable
matrix_1 = tf.Variable([[1, 2], [2, 3]], name="v1")
matrix_2 = tf.Variable([[3, 4], [5, 6]], name="v2")
init = tf.initialize_all_variables()
saver = tf.train.Saver()
sess = tf.Session()
sess.run(init)
save_path = saver.save(sess, "/model.ckpt")
sess.close()
Nonetheless you have variables matrix_1, matrix_2 they are saves as v1, v2 in the file.
Also names are used in TensorBoard to nicely show names of edges. You can even group them by using the same scope:
import tensorflow as tf
with tf.name_scope('hidden') as scope:
a = tf.constant(5, name='alpha')
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0), name='weights')
b = tf.Variable(tf.zeros([1]), name='biases')
How does TensorFlow name tensors?
In TensorFlow,what's the meaning of “:0” in a Variable's name?
It has to do with representation of tensors in underlying API. A tensor is a value associated with output of some op. In case of variables, there's a Variable op with one output. An op can have more than one output, so those tensors get referenced to as <op>:0, <op>:1 etc. For instance if you use tf.nn.top_k, there are two values created by this op, so you may see TopKV2:0 and TopKV2:1
a,b=tf.nn.top_k([1], 1)
print a.name # => 'TopKV2:0'
print b.name # => 'TopKV2:1'
How to understand the term `tensor` in TensorFlow?
Why do we name variables in Tensorflow?的更多相关文章
- Tensorflow基本语法
一.tf.Variables() import tensorflow as tf Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) se ...
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
- TensorFlow入门(一)
目录 TensorFlow简介 TensorFlow基本概念 Using TensorFlow Optimization & Linear Regression & Logistic ...
- TensorFlow 2.0 新特性
安装 TensorFlow 2.0 Alpha 本文仅仅介绍 Windows 的安装方式: pip install tensorflow==2.0.0-alpha0 # cpu 版本 pip inst ...
- [Tensorflow] Cookbook - Object Classification based on CIFAR-10
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...
- Effective Tensorflow[转]
Effective TensorFlow Table of Contents TensorFlow Basics Understanding static and dynamic shapes Sco ...
- Tensorflow运行程序报错 FailedPreconditionError
1 FailedPreconditionError错误现象 在运行tensorflow时出现报错,报错语句如下: FailedPreconditionError (see above for trac ...
- 53、tensorflow基本操作
import tensorflow as tf import numpy as np x_data = np.float32(np.random.rand(2,100)) print(x_data) ...
- DeepLearning常用库简要介绍与对比
网上近日流传一张DL相关库在Github上的受关注度对比(数据应该是2016/03/15左右统计的): 其中tensorflow,caffe,keras和Theano排名比较靠前. 今日组会报告上tj ...
随机推荐
- Jquery生成二维码(微信中长按图片识别二维码功能)
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- redis的发布与订阅机制
Redis 发布/订阅机制原理分析 Redis 通过 PUBLISH. SUBSCRIBE 和 PSUBSCRIBE 等命令实现发布和订阅功能. 这些命令被广泛用于构建即时通信应用,比如网络聊天室(c ...
- C++比起C来新增的拓展
命名空间 register 在C语言横行的时代,为了加快运行速度,一些关键变量会被放入寄存器中,程序代码请求编译器把变量存入寄存器,然而C语言版的寄存器变量无法通过地址获得register变量.c++ ...
- Mstering QT5 chapter1
涉及到c++ 14新特性: lambda,autovariables. A basic .pro file generally contains: 1) Qt modules used (core, ...
- [ReferenceError: __insane_exports is not defined] [monaco-editor@0.18.0] [vue] [typescript]
npm install monaco-editor@ 安装上面的命令,安装0.17.0版本.
- windows版mysql添加远程访问
use mysql; ##然后查看下当前连接允许情况 select host, user, authentication_string, plugin from user; ##依次执行 CREATE ...
- 【C++札记】标准模板库string
介绍 c++中字符串string对象属于一个类,内置了很多实用的成员函数,操作简单,方便更直观. 命名空间为std,所属头文件<string> 注意:不是<string.h>. ...
- 第6章:LeetCode--数组(冒泡排序、快速排序)
11. Container With Most Water class Solution { public: int maxArea(vector<int>& height) { ...
- 导出excel的功能效果实现
<el-button @click="exportExcel" > <i style="display: inline-block;"> ...
- (二)ActiveMQ之点对点消息实现
一.点对点消息实现概念 在点对点或队列模型下,一个生产者向一个特定的队列发布消息,一个消费者从该队列中读取消息.这里,生产者知道消费者的队列,并直接将消息发送到消费者的队列.这种模式被概括为:只有一个 ...