Why do we name variables in Tensorflow?
Reference:Stack Overflow。
The name
parameter is optional (you can create variables and constants with or without it), and the variable you use in your program does not depend on it. Names can be helpful in a couple of places:
When you want to save or restore your variables (you can save them to a binary file after the computation). From docs:
By default, it uses the value of the Variable.name property for each variable
matrix_1 = tf.Variable([[1, 2], [2, 3]], name="v1")
matrix_2 = tf.Variable([[3, 4], [5, 6]], name="v2")
init = tf.initialize_all_variables()
saver = tf.train.Saver()
sess = tf.Session()
sess.run(init)
save_path = saver.save(sess, "/model.ckpt")
sess.close()
Nonetheless you have variables matrix_1
, matrix_2
they are saves as v1
, v2
in the file.
Also names are used in TensorBoard to nicely show names of edges. You can even group them by using the same scope:
import tensorflow as tf
with tf.name_scope('hidden') as scope:
a = tf.constant(5, name='alpha')
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0), name='weights')
b = tf.Variable(tf.zeros([1]), name='biases')
How does TensorFlow name tensors?
In TensorFlow,what's the meaning of “:0” in a Variable's name?
It has to do with representation of tensors in underlying API. A tensor is a value associated with output of some op. In case of variables, there's a Variable
op with one output. An op can have more than one output, so those tensors get referenced to as <op>:0
, <op>:1
etc. For instance if you use tf.nn.top_k
, there are two values created by this op, so you may see TopKV2:0
and TopKV2:1
a,b=tf.nn.top_k([1], 1)
print a.name # => 'TopKV2:0'
print b.name # => 'TopKV2:1'
How to understand the term `tensor` in TensorFlow?
Why do we name variables in Tensorflow?的更多相关文章
- Tensorflow基本语法
一.tf.Variables() import tensorflow as tf Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) se ...
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
- TensorFlow入门(一)
目录 TensorFlow简介 TensorFlow基本概念 Using TensorFlow Optimization & Linear Regression & Logistic ...
- TensorFlow 2.0 新特性
安装 TensorFlow 2.0 Alpha 本文仅仅介绍 Windows 的安装方式: pip install tensorflow==2.0.0-alpha0 # cpu 版本 pip inst ...
- [Tensorflow] Cookbook - Object Classification based on CIFAR-10
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...
- Effective Tensorflow[转]
Effective TensorFlow Table of Contents TensorFlow Basics Understanding static and dynamic shapes Sco ...
- Tensorflow运行程序报错 FailedPreconditionError
1 FailedPreconditionError错误现象 在运行tensorflow时出现报错,报错语句如下: FailedPreconditionError (see above for trac ...
- 53、tensorflow基本操作
import tensorflow as tf import numpy as np x_data = np.float32(np.random.rand(2,100)) print(x_data) ...
- DeepLearning常用库简要介绍与对比
网上近日流传一张DL相关库在Github上的受关注度对比(数据应该是2016/03/15左右统计的): 其中tensorflow,caffe,keras和Theano排名比较靠前. 今日组会报告上tj ...
随机推荐
- Matlab绘制阶梯形图
声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 对于Matlab的使用情况常常是这样子的,很多零碎的函数名字很难记忆,经常用过后过一段时间就又忘记了,又得去网 ...
- (1) laravel php artisan list make
php artisan list make Laravel Framework 5.4.36 Usage: command [options] [arguments] Options: -h, --h ...
- 基于Jquery ui 可复用的酒店 web页面选择入住日期插件
效果图: 代码: <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" ...
- QT信号槽连接
一:信号槽是什么? Qt的信号和槽机制是Qt的一大特点,实际上这是和MFC中的消息映射机制相似的东西,要完成的事情也差不多,就是发送一个消息然后让其它窗口响应,当然,这里的消息是广义的说法,简单点说就 ...
- Python 图形库
1. 总体介绍 http://www.cnblogs.com/Vito2008/p/5264291.html 2.pygal http://rfyiamcool.blog.51cto.com/1030 ...
- Python小技巧:使用一行命令把你的电脑变成服务器
不知道你有没有遇到这么一种情况,就是你有时候想要把电脑上的一些东西传输到你的手机或者 Pad ,你要么需要使用数据线连接到电脑,有时候还要装各种驱动才可以进行数据传输,要么需要借助第三方的工具,在局域 ...
- 设计模式的好书 -- ongoing
1 设计模式--可复用面向对象软件的基础 Erich Gamma. Richard Helm -- 已经下载了/baiduNetDisk Design Patterns --- Element ...
- 快速了解NIO
NIO的由来 我们都知道,在jdk1.4的时候就开始引入NIO了,它是基于Selector机制的非阻塞I/O,可以将多个异步的I/O操作集中到一个或几个线程中进行处理,目的就是为了代替阻塞I/O,提到 ...
- COleVariant类
COleVariant本质上是一个枚举,用同一种类型来表达不同的子类型.如同boost中的variant. COLeVariant类是对VARIANT结构的封装. VARIANT结构包含两部分.其一是 ...
- Hystrix的介绍(断路、降级)
在大中型分布式系统中,通常系统很多依赖(HTTP,hession,Netty,Dubbo等),如下图: 在高并发访问下,这些依赖的稳定性与否对系统的影响非常大,但是依赖有很多不可控问题:如网络 ...