ELM:ELM实现鸢尾花种类测试集预测识别正确率(better)结果对比—Jason niu
load iris_data.mat P_train = [];
T_train = [];
P_test = [];
T_test = [];
for i = 1:3
temp_input = features((i-1)*50+1:i*50,:);
temp_output = classes((i-1)*50+1:i*50,:);
n = randperm(50); P_train = [P_train temp_input(n(1:40),:)'];
T_train = [T_train temp_output(n(1:40),:)']; P_test = [P_test temp_input(n(41:50),:)'];
T_test = [T_test temp_output(n(41:50),:)'];
end [IW,B,LW,TF,TYPE] = elmtrain(P_train,T_train,20,'sig',1); T_sim_1 = elmpredict(P_train,IW,B,LW,TF,TYPE);
T_sim_2 = elmpredict(P_test,IW,B,LW,TF,TYPE); result_1 = [T_train' T_sim_1'];
result_2 = [T_test' T_sim_2']; k1 = length(find(T_train == T_sim_1));
n1 = length(T_train);
Accuracy_1 = k1 / n1 * 100;
disp(['训练集正确率Accuracy = ' num2str(Accuracy_1) '%(' num2str(k1) '/' num2str(n1) ')']) k2 = length(find(T_test == T_sim_2));
n2 = length(T_test);
Accuracy_2 = k2 / n2 * 100;
disp(['测试集正确率Accuracy = ' num2str(Accuracy_2) '%(' num2str(k2) '/' num2str(n2) ')']) figure(2)
plot(1:30,T_test,'bo',1:30,T_sim_2,'r-*')
grid on
xlabel('测试集样本编号')
ylabel('测试集样本类别')
string = {'ELM:ELM实现鸢尾花种类测试集预测识别正确率(better)结果对比—Jason niu';['(正确率Accuracy = ' num2str(Accuracy_2) '%)' ]};
title(string)
legend('真实值','ELM预测值')

ELM:ELM实现鸢尾花种类测试集预测识别正确率(better)结果对比—Jason niu的更多相关文章
- ELM:ELM基于近红外光谱的汽油测试集辛烷值含量预测结果对比—Jason niu
%ELM:ELM基于近红外光谱的汽油测试集辛烷值含量预测结果对比—Jason niu load spectra_data.mat temp = randperm(size(NIR,1)); P_tra ...
- RBF:RBF基于近红外光谱的汽油辛烷值含量预测结果对比—Jason niu
load spectra_data.mat temp = randperm(size(NIR,1)); P_train = NIR(temp(1:50),:)'; T_train = octane(t ...
- GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花种类识别正确率、各个模型运行时间对比—Jason niu
load iris_data.mat P_train = []; T_train = []; P_test = []; T_test = []; for i = 1:3 temp_input = fe ...
- NN:实现BP神经网络的回归拟合,基于近红外光谱的汽油辛烷值含量预测结果对比—Jason niu
load spectra_data.mat plot(NIR') title('Near infrared spectrum curve—Jason niu') temp = randperm(siz ...
- TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #Import MNIST data from t ...
- PCA:利用PCA(四个主成分的贡献率就才达100%)降维提高测试集辛烷值含量预测准确度并《测试集辛烷值含量预测结果对比》—Jason niu
load spectra; temp = randperm(size(NIR, 1)); P_train = NIR(temp(1:50),:); T_train = octane(temp(1:50 ...
- Tensorflow&CNN:验证集预测与模型评价
版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/90480140 - 写在前面 本科毕业设计终于告一段落了.特 ...
- SVM—PK—BP:SVR(better)和BP两种方法比较且实现建筑物钢筋混凝土抗压强度预测—Jason niu
load concrete_data.mat n = randperm(size(attributes,2)); p_train = attributes(:,n(1:80))'; t_train = ...
- 使用sklearn进行数据挖掘-房价预测(2)—划分测试集
使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...
随机推荐
- Confluence 6 用户宏最佳实践
这个页面为你在创建用户宏的最佳实践中包含了一些小技巧和建议. 为你的宏添加一个简短的描述 我们鼓励你为你的宏在 模板(Template )添加一个备注的描述,可以参考下面的显示的内容: ## Macr ...
- python使用 HTMLTestRunner.py生成测试报告
HTMLTestRunner.py python 2版本 下载地址:http://tungwaiyip.info/software/HTMLTestRunner.html 使用时,先建立一个”PyDe ...
- 论文阅读:Review of Visual Saliency Detection with Comprehensive Information
这篇文章目前发表在arxiv,日期:20180309. 这是一篇针对多种综合性信息的视觉显著性检测的综述文章. 注:有些名词直接贴原文,是因为不翻译更容易理解.也不会逐字逐句都翻译,重要的肯定不会错过 ...
- LeetCode(116):填充同一层的兄弟节点
Medium! 题目描述: 给定一个二叉树 struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *n ...
- VGG-Net
论文下载 源码GitHub 目的 这篇文章是以比赛为目的——解决ImageNet中的1000类图像分类和定位问题.在此过程中,作者做了六组实验,对应6个不同的网络模型,这六个网络深度逐渐递增的同时,也 ...
- getComputedStyle()用法详解
那如果元素即没有在style属性中设置宽高,也没有在样式表中设置宽高,还能用getComputedStyle或currentStyle获取吗?答案是getComputedStyle可以,current ...
- hdu 5183(Hash处理区间问题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5183 题意:给出一个n个元素的数组,现在要求判断 a1-a2+a3-a4+.....+/-an 中是否 ...
- 饮冰三年-人工智能-Python-16Python基础之迭代器、生成器、装饰器
一:迭代器: 最大的特点:节省内存 1.1 迭代器协议 a:对象必须提供一个next方法, b:执行方法要么返回迭代中的下一项,要么抛弃一个Stopiteration异常, c:只能向后不能向前. 1 ...
- OpenCV-Python入门教程4-颜色空间转换
一.颜色空间转换 import cv2 import numpy as np img = cv2.imread('lena.jpg') # 转换成灰度图 img_gray = cv2.cvtColor ...
- C#本质论第四版-1,抄书才能看下去,不然两三眼就看完了,一摞书都成了摆设。抄下了记忆更深刻
C#本质论第四版-1,抄书才能看下去,不然两三眼就看完了,一摞书都成了摆设.抄下了记忆更深刻 本书面向的读者 写作本书时,我面临的一个挑战是如何持续吸引高级开发人员眼球的同时,不因使用assembly ...