分类是机器学习的一个基本问题, 基本原则就是将某个待分类的事情根据其不同特征划分为两类.

  • Email: 垃圾邮件/正常邮件
  • 肿瘤: 良性/恶性
  • 蔬菜: 有机/普通

  对于分类问题, 其结果 y∈{0,1}, 即只有正类或负类. 对于预测蔬菜是否为有机这件事, y = 0表示蔬菜为普通, y= 1表示蔬菜为有机.


  逻辑回归是分类问题中的一个基本算法, 它的猜想函数hθ(x) = g(θT*x)

  其中, g(z) = 1 / (1+e-z), 该函数称为sigmoid函数或logistic函数, 是一个增函数,输出映射g(z)∈[0,1].

  hθ(x)表示当输入为x, (权重)参数为θ时, 预测y=1的概率.


代码实现:

function g = sigmoid(z)
%SIGMOID Compute sigmoid function
% g = SIGMOID(z) computes the sigmoid of z.

g = zeros(size(z));

for i = 1:size(z,1)
  for j = 1:size(z,2)
    g(i,j) = 1/(1+e^(-z(i,j)));
  endfor
endfor

end


  对于逻辑回归的猜想函数hθ(x) = g(θT*x), 当θT*x = 0时, hθ(x) = 0.5. 而我们规定当hθ(x) >= 0.5, 即θT*x >=0时, 预测结果 y =1, 当hθ(x) <0.5时,预测结果 y= 0.

  因此, 通过给定的权重参数矩阵与特征值, 可以计算出该预测函数的决策边界 , 通过这条边界即可将问题进行分类.


  逻辑回归算法的代价函数表示当预测值与实际值产生偏差时所承受的惩罚大小, 公示表示为cost(hθ(x), y) = -log(hθ(x)), if y =1, -log(1-hθ(x)), if y = 0.

  当y=1时,假定这个样本为正类。如果此时hθ(x) = 1,则对这个样本而言的cost=0,表示这个样本的预测完全准确。但是如果此时预测的概率hθ(x) = 0,那么cost→∞。直观解释的话,由于此时样本为一个正样本,但是预测的结果P(y=1|x;θ) = 0, 也就是说预测 y=1的概率为0,那么此时就要对损失函数加一个很大的惩罚项。当y = 0时, 道理相同.


  为了获得更准确的分类决策边界, 我们需要调节代价函数到最小值, 这时, 预测值与实际结果间偏差最小. 为了最小化代价函数, 我们需要调节参数θ. 比较常用的方法为梯度下降法.

  梯度下降是迭代法的一种, 其计算过程就是沿梯度下降的方向求解极小值. 

  逻辑回归代价函数J(θ):

  为了最小化J(θ), 需要不断重复减小θ的值直到J(θ)收敛:

  其中α为学习速率, 即每次下降的步长大小, 如果α过于大, 可能导致无法收敛, 如果α过于小, 可能导致收敛速度过慢.


代码实现:

function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.

% Initialize some useful values
m = length(y); % number of training examples

J = 0;
grad = zeros(size(theta));

Jtmp=0;
h= zeros(m,1);

%step1:compute hx
hx = X * theta;

%step2:compute h(hx)
h = sigmoid(hx);

%step3:compute cost function's sum part
for i=1:m,
  Jtmp=Jtmp+(-y(i)*log(h(i))-(1-y(i))*log(1-h(i)));
endfor
J=(1/m)*Jtmp;

%step4:compute gradient's sum part 
sum1 =zeros(size(X,2),1);%#features row
for i=1:m
  sum1 = sum1+(h(i)-y(i)).*X(i,:)';
endfor

grad= (1/m)*sum1;

end

  

Logistic Regression(逻辑回归)的更多相关文章

  1. Coursera DeepLearning.ai Logistic Regression逻辑回归总结

    既<Machine Learning>课程后,Andrew Ng又推出了新一系列的课程<DeepLearning.ai>,注册了一下可以试听7天.之后每个月要$49,想想还是有 ...

  2. Logistic Regression逻辑回归

    参考自: http://blog.sina.com.cn/s/blog_74cf26810100ypzf.html http://blog.sina.com.cn/s/blog_64ecfc2f010 ...

  3. Logistic Regression(逻辑回归)(二)—深入理解

    (整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 上一篇讲解了Logistic Regression的基础知识,感觉 ...

  4. 机器学习简要笔记(五)——Logistic Regression(逻辑回归)

    1.Logistic回归的本质 逻辑回归是假设数据服从伯努利分布,通过极大似然函数的方法,运用梯度上升/下降法来求解参数,从而实现数据的二分类. 1.1.逻辑回归的基本假设 ①伯努利分布:以抛硬币为例 ...

  5. Deep Learning 学习笔记(4):Logistic Regression 逻辑回归

    逻辑回归主要用于解决分类问题,在现实中有更多的运用, 正常邮件or垃圾邮件 车or行人 涨价or不涨价 用我们EE的例子就是: 高电平or低电平 同时逻辑回归也是后面神经网络到深度学习的基础. (原来 ...

  6. 【原】Coursera—Andrew Ng机器学习—Week 3 习题—Logistic Regression 逻辑回归

    课上习题 [1]线性回归 Answer: D A 特征缩放不起作用,B for all 不对,C zero error不对 [2]概率 Answer:A [3]预测图形 Answer:A 5 - x1 ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 6_Logistic Regression 逻辑回归

    Lecture6 Logistic Regression 逻辑回归 6.1 分类问题 Classification6.2 假设表示 Hypothesis Representation6.3 决策边界 ...

  8. 机器学习之LinearRegression与Logistic Regression逻辑斯蒂回归(三)

    一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_v ...

  9. 吴恩达深度学习:2.1Logistic Regression逻辑回归及其损失函数

    1.Logistic Regression是一个二元分类问题 (1)已知输入的特征向量x可能是一张图,你希望把它识别出来,这是不是猫图,你需要一个算法,可以给出预测值,更正式的y是一个概率,当输入特征 ...

随机推荐

  1. cin.ignore

    功能:函数用于输入流.它读入字符,直到已经读了num 个字符(默认为1)或是直到字符delim 被读入(默认为EOF).其调用形式为cin.ignore(n,终止字符)       原型:istrea ...

  2. new Date().getTime()和System.currentTimeMillis()对比

    我在工作中,看项目组的代码时,在代码中会发现一个有趣的现象,有使用new Date().getTime()来获取时间戳的, 也有使用System.currentTimeMillis()来获取时间戳的, ...

  3. Poj2688cleaningrobot

    这道题让我们求一个地图上的各个点之间的最短路径说白了旅行商问题. 那么我们先用一个裸的BFS求出各个点之间的最短距离,然后我们再枚举各个点的全排列即可 这道题的细节很多,详见注释 上代码~ #incl ...

  4. Game Development Patterns and Best Practices (John P. Doran / Matt Casanova 著)

    https://github.com/PacktPublishing/Game-Development-Patterns-and-Best-Practices https://github.com/m ...

  5. SMD 自动点料机维修

    SMD 自动点料机维修 这个工具是一个好帮手,但是过完年回来发现坏了. 设置了数量不会自动停,按停止键没有反应,一定要按打印键才能停止. 这可愁死我了. 正常情况下开机设置好数量,然后开始点数,点到数 ...

  6. Centos7下安装pptp客户端

    1.使用yum安装ppp和pptp yum install ppp pptp 2.配置pptp pptpsetup --create vpn连接名称(自定义) --server VPN服务器IP -- ...

  7. Oracle 外键级联更新

    Oracle数据库中,外键约束只允许级联删除,不允许级联更新,因此,如果想要实现主表数据更新后,子表外键自动更新,只能取消外键关系,通过前端程序来维护实现完整引用,一个代替的解决方案是使用延迟约束和触 ...

  8. 找到排序矩阵中从小到大第K个数字

    一 题目描述 在一个排序矩阵中找从小到大的第 k 个整数. 排序矩阵的定义为:每一行递增,每一列也递增. 二 题解 由于排序矩阵中的每一行都是递增的,并且每一列都是递增的.从小到大第k个数,实际上就是 ...

  9. 双网卡单IP实现网卡冗余与负载均衡

    WINDOWS下: 所谓双网卡,就是通过软件将双网卡绑定为一个IP地址,这个技术对于许多朋友来说并不陌生,许多高档服务器网卡(例如intel8255x系列.3COM服务器网卡等)都具有多网卡绑定功能, ...

  10. elasticsearch 5.0以上不支持consistency 和 quorum

    从ES2.2升级到5.2后,原先执行put 带 consistency=all / quorum 参数的,都报错了,提示语法错误.. 百度查了一通,都没发现相关问题.无奈,还是查官方文档.. 发现这是 ...