Comparison of several types of convergence
In functional analysis, several types of convergence are defined, namely,
- strong convergence for elements in normed linear space.
- weak convergence for elements in normed linear space, which is defined via the assistance of the dual space.
- weak-* convergence for linear functionals in the strong dual space of a normed linear space.
- pointwise convergence for linear operators.
This post summarizes their definitions and shows the differences.
Definition (Strong convergence) Let \(X\) be a normed linear space and \((x_l)_{l \in \mathbb{N}}\) be a sequence in \(X\). Then \((x_l)_{l \in \mathbb{N}}\) converges (strongly) to \(x \in X\) if
\[
\lim_{l \rightarrow \infty} \norm{x_l - x}_X = 0.
\]It can be seen that the strong convergence is just the convergence with respect to the “distance between points”, or more generally, the so-called “norm” defined for a linear space, which is what we have been familiar with in fundamental calculus.
Definition (Weak convergence) Let \(X\) be a Banach space and \(X’\) be its dual space. The sequence \((x_l)_{l \in \mathbb{N}}\) in \(X\) converges weakly to \(x \in X\) if
\[
\lim_{l \rightarrow \infty} \abs{f(x_l) - f(x)} = 0 \quad (\forall f \in X’).
\]We can see that the convergence here is called weak, because it is not directly based on point distance in the original space \(X\), but the evaluation of an arbitrary functional in the dual space on the sequence.
It is easy and natural to see that the strong convergence implies weak convergence because of the continuity of the linear functional \(f \in X’\):
\[
\abs{f(x_l) - f(x)} = \abs{f(x_l - x)} \leq \norm{f}_{X’} \norm{x_l - x}_X.
\]Definition (Pointwise convergence) Let \(X\) and \(Y\) be normed spaces. The sequence of bounded linear operators \((T_l)_{l \in \mathbb{N}} \subset L(X, Y)\) converges to \(T \in L(X, Y)\) if
\[
\lim_{l \rightarrow \infty} \norm{T_l x - T x}_Y = 0 \quad (\forall x \in X).
\]The pointwise convergence is used to describe the convergence of operators at each point in \(X\). A more strict convergence for operators is uniform convergence, which means the convergence speeds of \((T_l x)_{l \in \mathbb{N}}\) at different points \(x\) in \(X\) are comparable. It is also easy to see that the strong convergence of \((T_l)_{l \in \mathbb{N}}\) implies pointwise convergence.
Definition (Weak-* convergence) Let \(X_s’\) be the strong dual space of the normed linear space \(X\). The linear functional sequence \((T_l)_{l \in \mathbb{N}}\) converges to \(T\) in \(X_s’\) if
\[
\lim_{l \rightarrow \infty} \abs{T_l x - T x} = 0 \quad (\forall x \in X).
\]The weak-* convergence can be considered as a special case of pointwise convergence with the difference that the linear operators become linear functionals and the dual space \(X’\) of \(X\) is assigned with the strong topology.
Comparison of several types of convergence的更多相关文章
- Acquiring Heap Dumps
Acquiring Heap Dumps HPROF Binary Heap Dumps Get Heap Dump on an OutOfMemoryError One can get a HP ...
- chromium之scoped_ptr
看看怎么使用 // Scopers help you manage ownership of a pointer, helping you easily manage the // a pointer ...
- Jerry的ABAP原创技术文章合集
我之前发过三篇和ABAP相关的文章: 1. Jerry的ABAP, Java和JavaScript乱炖 这篇文章包含我多年来在SAP成都研究院使用ABAP, Java和JavaScript工作过程中的 ...
- C#值类型和引用类型与Equals方法
1. C#的值类型和引用类型 C#的对象里面有两种类型,一个是引用类型,一个是值类型,值类型和引用类型的具体分类可以看下面的分类. 在C#中,不管是引用类型还是值类型,他们都隐式继承Object类 ...
- In-App Purchase Programming Guide----(二) ---- Designing Your App’s Products
Designing Your App’s Products A product is something you want to sell in your app’s store. You creat ...
- Python Cheatsheet
Comprehensive Python Cheatsheet Download text file, Buy PDF, Fork me on GitHub or Check out FAQ. Con ...
- "SQL Server does not handle comparison of NText, Text, Xml, or Image data types."
"SQL Server does not handle comparison of NText, Text, Xml, or Image data types." sql2000 ...
- IComparable<T> Vs. IComparer<T> System.Comparison<T>
Well they are not quite the same thing as IComparer<T> is implemented on a type that is capabl ...
- MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
随机推荐
- jQuery.extend()参数
非原创,转载仅供学习 在处理插件参数的接收上,通常使用jQuery的extend方法.extend方法传递单个对象的情况下,这个对象会合并到jQuery身上,而当用extend方法传递一个以上的参数时 ...
- canvas - 简单画板
截图: Demo:Demo 上代码:. <!DOCTYPE html> <html lang="en"> <head> <meta cha ...
- win10安装MarkdownPad 2报错This view has crashed的处理及md简单语法
# #开头是段落的意思 不带#号是普通内容 # 下划线的写法是两个#号 ## # 列表的写法,以*号开头 * spring * summer * autumn * winter # 以竖线开头 > ...
- 3-html 缩写-地址-文字方向-引用块-题注的格式
HTML Quotation and Citation Elements Tag Description <abbr> Defines an abbreviation or acronym ...
- javacv:调取本地摄像头,抓取人脸,保存为图片
MAVEN: <dependency> <groupId>org.bytedeco</groupId> <artifactId>javacv-platf ...
- oracle 11.2.0.4 rac 打补丁
本次安装pus环境是11.2.0.4 rac,打的patch为11.2.0.4.180717 (Includes Database PSU),gi补丁和数据库补丁一起打 安装最新opatch版本 un ...
- Go数组和切片定义和初始化
1 前言 切片是动态数组,数组数组是按值赋值,切片是按地址赋值(引用) 2 代码 2.1 数组初始化 func basic_array(){ //var arr2 = [3]int{2,4,6} // ...
- which命令和bin目录
命令: which 作用: 查看执行命令所在位置 使用: which ls which useradd 等等... bin和sbin: 绝大多数可执行文件都保存在 /bin./sbin./usr/bi ...
- cemtos7.2搭建samba
1背景 转到Linux有段时间了,vim操作还不能应对工程代码,之前一直都是Gnome桌面 + Clion 作开发环境,无奈在服务器上没有这样的环境, 看同事是(Windows)Source Insi ...
- 本文转自 MyEclipse 2015反编译插件安装
本文转自MyEclipse 2015反编译插件安装 分享一下下载插件的地址,百度网盘:链接:http://pan.baidu.com/s/1nturiAH 密码:yk73 其次:我来说下具体操作步骤: ...