In functional analysis, several types of convergence are defined, namely,

  • strong convergence for elements in normed linear space.
  • weak convergence for elements in normed linear space, which is defined via the assistance of the dual space.
  • weak-* convergence for linear functionals in the strong dual space of a normed linear space.
  • pointwise convergence for linear operators.

This post summarizes their definitions and shows the differences.

  1. Definition (Strong convergence) Let \(X\) be a normed linear space and \((x_l)_{l \in \mathbb{N}}\) be a sequence in \(X\). Then \((x_l)_{l \in \mathbb{N}}\) converges (strongly) to \(x \in X\) if

    \[
    \lim_{l \rightarrow \infty} \norm{x_l - x}_X = 0.
    \]

    It can be seen that the strong convergence is just the convergence with respect to the “distance between points”, or more generally, the so-called “norm” defined for a linear space, which is what we have been familiar with in fundamental calculus.

  2. Definition (Weak convergence) Let \(X\) be a Banach space and \(X’\) be its dual space. The sequence \((x_l)_{l \in \mathbb{N}}\) in \(X\) converges weakly to \(x \in X\) if

    \[
    \lim_{l \rightarrow \infty} \abs{f(x_l) - f(x)} = 0 \quad (\forall f \in X’).
    \]

    We can see that the convergence here is called weak, because it is not directly based on point distance in the original space \(X\), but the evaluation of an arbitrary functional in the dual space on the sequence.

    It is easy and natural to see that the strong convergence implies weak convergence because of the continuity of the linear functional \(f \in X’\):

    \[
    \abs{f(x_l) - f(x)} = \abs{f(x_l - x)} \leq \norm{f}_{X’} \norm{x_l - x}_X.
    \]

  3. Definition (Pointwise convergence) Let \(X\) and \(Y\) be normed spaces. The sequence of bounded linear operators \((T_l)_{l \in \mathbb{N}} \subset L(X, Y)\) converges to \(T \in L(X, Y)\) if

    \[
    \lim_{l \rightarrow \infty} \norm{T_l x - T x}_Y = 0 \quad (\forall x \in X).
    \]

    The pointwise convergence is used to describe the convergence of operators at each point in \(X\). A more strict convergence for operators is uniform convergence, which means the convergence speeds of \((T_l x)_{l \in \mathbb{N}}\) at different points \(x\) in \(X\) are comparable. It is also easy to see that the strong convergence of \((T_l)_{l \in \mathbb{N}}\) implies pointwise convergence.

  4. Definition (Weak-* convergence) Let \(X_s’\) be the strong dual space of the normed linear space \(X\). The linear functional sequence \((T_l)_{l \in \mathbb{N}}\) converges to \(T\) in \(X_s’\) if

    \[
    \lim_{l \rightarrow \infty} \abs{T_l x - T x} = 0 \quad (\forall x \in X).
    \]

    The weak-* convergence can be considered as a special case of pointwise convergence with the difference that the linear operators become linear functionals and the dual space \(X’\) of \(X\) is assigned with the strong topology.

Comparison of several types of convergence的更多相关文章

  1. Acquiring Heap Dumps

      Acquiring Heap Dumps HPROF Binary Heap Dumps Get Heap Dump on an OutOfMemoryError One can get a HP ...

  2. chromium之scoped_ptr

    看看怎么使用 // Scopers help you manage ownership of a pointer, helping you easily manage the // a pointer ...

  3. Jerry的ABAP原创技术文章合集

    我之前发过三篇和ABAP相关的文章: 1. Jerry的ABAP, Java和JavaScript乱炖 这篇文章包含我多年来在SAP成都研究院使用ABAP, Java和JavaScript工作过程中的 ...

  4. C#值类型和引用类型与Equals方法

    1. C#的值类型和引用类型 C#的对象里面有两种类型,一个是引用类型,一个是值类型,值类型和引用类型的具体分类可以看下面的分类.   在C#中,不管是引用类型还是值类型,他们都隐式继承Object类 ...

  5. In-App Purchase Programming Guide----(二) ---- Designing Your App’s Products

    Designing Your App’s Products A product is something you want to sell in your app’s store. You creat ...

  6. Python Cheatsheet

    Comprehensive Python Cheatsheet Download text file, Buy PDF, Fork me on GitHub or Check out FAQ. Con ...

  7. "SQL Server does not handle comparison of NText, Text, Xml, or Image data types."

    "SQL Server does not handle comparison of NText, Text, Xml, or Image data types." sql2000 ...

  8. IComparable<T> Vs. IComparer<T> System.Comparison<T>

    Well they are not quite the same thing as IComparer<T> is implemented on a type that is capabl ...

  9. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

随机推荐

  1. jQuery中如何实现多库并存?

    多库共存就是“$ ”符号的冲突. 方法一: 利用jQuery的实用函数$.noConflict();这个函数归还$的名称控制权给另一个库,因此可以在页面上使用其他库.这时,我们可以用"jQu ...

  2. MySQL的information_schema

    在一次清空一张比较大的表时(在清空前占用400多兆),发现该表中记录为0条但是空间并没有被释放,采用下面方式可查看占用情况 -- 查询各个数据库占用磁盘的情况 ,),' MB') as data_si ...

  3. 使用GeoServer导出地图数据GeoJSON并应用

    在项目中,需要使用乡镇街道的地图边界,之前一直使用的是百度地图或Echarts地图,其没有这部分行政区的数据,需要在第三方购买数据,其提供的是shp文件 主文件:counties.shp 索引文件:c ...

  4. tcp和udp协议的聊天 和udp协议的时间同步机制-----编码

    tcp协议聊天 服务端:: 客户端 udp协议的聊天 ############ udp协议 ########### 服务器 import socket sk = socket.socket(type ...

  5. 使用SimHash进行海量文本去重[转]

    阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHas ...

  6. Vue.extend和Vue.component的联系与差异

    extend 是构造一个组件的语法器. 你给它参数 他给你一个组件 然后这个组件 你可以作用到Vue.component 这个全局注册方法里, 也可以在任意vue模板里使用apple组件 var ap ...

  7. Maven集成SSM

    目录 Maven 集成SSM 添加log4j配置文件 配置web.xml 添加编码过滤器 添加put和delete请求 配置springmvc.xml 配置文件上传 配置druid连接池信息 配置sq ...

  8. linux文件权限目录配置笔记

    ###linux 文件权限目录配置笔记 ---------- 多人多任务环境 linux 一般将文件可存取的身份分为三个类别:owner group others Permission deny ls ...

  9. exec与match方法的区别

    http://www.cnblogs.com/xiehuiqi220/archive/2008/11/05/1327487.html var someText= "web2.0 .net2. ...

  10. strchr()

    strchr()主要有2个最有用的用法: 第一个:搜索字符串在另一字符串中的第一次出现.并返回剩余的部分 $str = "hello_chrdai_1993"; $not_incl ...