Comparison of several types of convergence
In functional analysis, several types of convergence are defined, namely,
- strong convergence for elements in normed linear space.
- weak convergence for elements in normed linear space, which is defined via the assistance of the dual space.
- weak-* convergence for linear functionals in the strong dual space of a normed linear space.
- pointwise convergence for linear operators.
This post summarizes their definitions and shows the differences.
Definition (Strong convergence) Let \(X\) be a normed linear space and \((x_l)_{l \in \mathbb{N}}\) be a sequence in \(X\). Then \((x_l)_{l \in \mathbb{N}}\) converges (strongly) to \(x \in X\) if
\[
\lim_{l \rightarrow \infty} \norm{x_l - x}_X = 0.
\]It can be seen that the strong convergence is just the convergence with respect to the “distance between points”, or more generally, the so-called “norm” defined for a linear space, which is what we have been familiar with in fundamental calculus.
Definition (Weak convergence) Let \(X\) be a Banach space and \(X’\) be its dual space. The sequence \((x_l)_{l \in \mathbb{N}}\) in \(X\) converges weakly to \(x \in X\) if
\[
\lim_{l \rightarrow \infty} \abs{f(x_l) - f(x)} = 0 \quad (\forall f \in X’).
\]We can see that the convergence here is called weak, because it is not directly based on point distance in the original space \(X\), but the evaluation of an arbitrary functional in the dual space on the sequence.
It is easy and natural to see that the strong convergence implies weak convergence because of the continuity of the linear functional \(f \in X’\):
\[
\abs{f(x_l) - f(x)} = \abs{f(x_l - x)} \leq \norm{f}_{X’} \norm{x_l - x}_X.
\]Definition (Pointwise convergence) Let \(X\) and \(Y\) be normed spaces. The sequence of bounded linear operators \((T_l)_{l \in \mathbb{N}} \subset L(X, Y)\) converges to \(T \in L(X, Y)\) if
\[
\lim_{l \rightarrow \infty} \norm{T_l x - T x}_Y = 0 \quad (\forall x \in X).
\]The pointwise convergence is used to describe the convergence of operators at each point in \(X\). A more strict convergence for operators is uniform convergence, which means the convergence speeds of \((T_l x)_{l \in \mathbb{N}}\) at different points \(x\) in \(X\) are comparable. It is also easy to see that the strong convergence of \((T_l)_{l \in \mathbb{N}}\) implies pointwise convergence.
Definition (Weak-* convergence) Let \(X_s’\) be the strong dual space of the normed linear space \(X\). The linear functional sequence \((T_l)_{l \in \mathbb{N}}\) converges to \(T\) in \(X_s’\) if
\[
\lim_{l \rightarrow \infty} \abs{T_l x - T x} = 0 \quad (\forall x \in X).
\]The weak-* convergence can be considered as a special case of pointwise convergence with the difference that the linear operators become linear functionals and the dual space \(X’\) of \(X\) is assigned with the strong topology.
Comparison of several types of convergence的更多相关文章
- Acquiring Heap Dumps
Acquiring Heap Dumps HPROF Binary Heap Dumps Get Heap Dump on an OutOfMemoryError One can get a HP ...
- chromium之scoped_ptr
看看怎么使用 // Scopers help you manage ownership of a pointer, helping you easily manage the // a pointer ...
- Jerry的ABAP原创技术文章合集
我之前发过三篇和ABAP相关的文章: 1. Jerry的ABAP, Java和JavaScript乱炖 这篇文章包含我多年来在SAP成都研究院使用ABAP, Java和JavaScript工作过程中的 ...
- C#值类型和引用类型与Equals方法
1. C#的值类型和引用类型 C#的对象里面有两种类型,一个是引用类型,一个是值类型,值类型和引用类型的具体分类可以看下面的分类. 在C#中,不管是引用类型还是值类型,他们都隐式继承Object类 ...
- In-App Purchase Programming Guide----(二) ---- Designing Your App’s Products
Designing Your App’s Products A product is something you want to sell in your app’s store. You creat ...
- Python Cheatsheet
Comprehensive Python Cheatsheet Download text file, Buy PDF, Fork me on GitHub or Check out FAQ. Con ...
- "SQL Server does not handle comparison of NText, Text, Xml, or Image data types."
"SQL Server does not handle comparison of NText, Text, Xml, or Image data types." sql2000 ...
- IComparable<T> Vs. IComparer<T> System.Comparison<T>
Well they are not quite the same thing as IComparer<T> is implemented on a type that is capabl ...
- MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
随机推荐
- ubuntu 16.04 登录后黑屏
进入登录界面后黑屏,重新更新英伟达的显卡,也么有起作用. 解决办法,进入登录界面时,进入终端(ctrl+alt+f1),然后修改 grub配置文件,使其每次重启时都检查文件 sudo vi /etc ...
- Qt5.10.1 在windows下vs2017静态编译
1.在计算机上安装python库和perl库(因为后续的静态编译需要用到这两种语言),可以在命令行敲击“python”和“perl -v”检查是否安装成功. 2.修改msvc-desktop.conf ...
- 给Linux增加swap内存
有时内存不足时, 编译xxx报错cc: 编译器内部错误:已杀死(程序 cc1) Please submit a full bug report, with preprocessed source if ...
- -bash: /opt/cslc/jdk1.8.0_144/bin/jps: /lib/ld-linux.so.2: bad ELF interpreter: 没有那个文件或目录
yum install -y glibc.i686 解决问题
- ORACLE的数据类型的长度合集
-- ORACLE的数据类型常用的数据库字段类型如下:字段类型 中文说明 限制条件 其它说明CHAR 固定长度字符串 最大长度2000 bytesVARCHAR2 可变长度的字符串 最大长度4000 ...
- 参数FAST_START_MTTR_TARGET的理解
本文来源:keeptrying <参数FAST_START_MTTR_TARGET的理解> 参数FAST_START_MTTR_TARGET的理解 一.FAST_START_MTTR_T ...
- day11 函数的位置形参,位置实参,可变长位置形参,关键字形参
今天内容 函数的参数详解 形参与实参 形参及形式参数,就是在定义函数是括号中指定的参数(本质就是一个名字) 实参及实际参数,指的是在调用函数是传入的参数)(本质就是一个值) 在调用函数是就会把形参和实 ...
- MongoDB的简单操作
一.简介 二.MongoDB基础知识 三.安装 四.基本数据类型 五.增删改查操作 六.可视化工具 七.pymongo 一.简介 MongoDB是一款强大.灵活.且易于扩展的通用型数据库 MongoD ...
- jsp 运行时报错Cannot find a method to write property [firstName] of type [java.lang.String] in a bean of type [main.Employee]
原因: 代码没有安装bean的格式写 setFirstName写成了setFristName 错误代码 public void setFristName(String firstName) { thi ...
- Nginx详解十七:Nginx深度学习篇之动静分离
动静分离:通过中间件将动态请求和静态请求分离 作用:分离资源,减少不必要的请求消耗,减少请求延时 动静分离还有个好处就是,当动态请求的后端服务出问题了,只会影响动态的部分,静态资源不影响,照样加载 如 ...