In functional analysis, several types of convergence are defined, namely,

  • strong convergence for elements in normed linear space.
  • weak convergence for elements in normed linear space, which is defined via the assistance of the dual space.
  • weak-* convergence for linear functionals in the strong dual space of a normed linear space.
  • pointwise convergence for linear operators.

This post summarizes their definitions and shows the differences.

  1. Definition (Strong convergence) Let \(X\) be a normed linear space and \((x_l)_{l \in \mathbb{N}}\) be a sequence in \(X\). Then \((x_l)_{l \in \mathbb{N}}\) converges (strongly) to \(x \in X\) if

    \[
    \lim_{l \rightarrow \infty} \norm{x_l - x}_X = 0.
    \]

    It can be seen that the strong convergence is just the convergence with respect to the “distance between points”, or more generally, the so-called “norm” defined for a linear space, which is what we have been familiar with in fundamental calculus.

  2. Definition (Weak convergence) Let \(X\) be a Banach space and \(X’\) be its dual space. The sequence \((x_l)_{l \in \mathbb{N}}\) in \(X\) converges weakly to \(x \in X\) if

    \[
    \lim_{l \rightarrow \infty} \abs{f(x_l) - f(x)} = 0 \quad (\forall f \in X’).
    \]

    We can see that the convergence here is called weak, because it is not directly based on point distance in the original space \(X\), but the evaluation of an arbitrary functional in the dual space on the sequence.

    It is easy and natural to see that the strong convergence implies weak convergence because of the continuity of the linear functional \(f \in X’\):

    \[
    \abs{f(x_l) - f(x)} = \abs{f(x_l - x)} \leq \norm{f}_{X’} \norm{x_l - x}_X.
    \]

  3. Definition (Pointwise convergence) Let \(X\) and \(Y\) be normed spaces. The sequence of bounded linear operators \((T_l)_{l \in \mathbb{N}} \subset L(X, Y)\) converges to \(T \in L(X, Y)\) if

    \[
    \lim_{l \rightarrow \infty} \norm{T_l x - T x}_Y = 0 \quad (\forall x \in X).
    \]

    The pointwise convergence is used to describe the convergence of operators at each point in \(X\). A more strict convergence for operators is uniform convergence, which means the convergence speeds of \((T_l x)_{l \in \mathbb{N}}\) at different points \(x\) in \(X\) are comparable. It is also easy to see that the strong convergence of \((T_l)_{l \in \mathbb{N}}\) implies pointwise convergence.

  4. Definition (Weak-* convergence) Let \(X_s’\) be the strong dual space of the normed linear space \(X\). The linear functional sequence \((T_l)_{l \in \mathbb{N}}\) converges to \(T\) in \(X_s’\) if

    \[
    \lim_{l \rightarrow \infty} \abs{T_l x - T x} = 0 \quad (\forall x \in X).
    \]

    The weak-* convergence can be considered as a special case of pointwise convergence with the difference that the linear operators become linear functionals and the dual space \(X’\) of \(X\) is assigned with the strong topology.

Comparison of several types of convergence的更多相关文章

  1. Acquiring Heap Dumps

      Acquiring Heap Dumps HPROF Binary Heap Dumps Get Heap Dump on an OutOfMemoryError One can get a HP ...

  2. chromium之scoped_ptr

    看看怎么使用 // Scopers help you manage ownership of a pointer, helping you easily manage the // a pointer ...

  3. Jerry的ABAP原创技术文章合集

    我之前发过三篇和ABAP相关的文章: 1. Jerry的ABAP, Java和JavaScript乱炖 这篇文章包含我多年来在SAP成都研究院使用ABAP, Java和JavaScript工作过程中的 ...

  4. C#值类型和引用类型与Equals方法

    1. C#的值类型和引用类型 C#的对象里面有两种类型,一个是引用类型,一个是值类型,值类型和引用类型的具体分类可以看下面的分类.   在C#中,不管是引用类型还是值类型,他们都隐式继承Object类 ...

  5. In-App Purchase Programming Guide----(二) ---- Designing Your App’s Products

    Designing Your App’s Products A product is something you want to sell in your app’s store. You creat ...

  6. Python Cheatsheet

    Comprehensive Python Cheatsheet Download text file, Buy PDF, Fork me on GitHub or Check out FAQ. Con ...

  7. "SQL Server does not handle comparison of NText, Text, Xml, or Image data types."

    "SQL Server does not handle comparison of NText, Text, Xml, or Image data types." sql2000 ...

  8. IComparable<T> Vs. IComparer<T> System.Comparison<T>

    Well they are not quite the same thing as IComparer<T> is implemented on a type that is capabl ...

  9. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

随机推荐

  1. 《Windows核心编程》读书笔记 上

    [C++]<Windows核心编程>读书笔记 这篇笔记是我在读<Windows核心编程>第5版时做的记录和总结(部分章节是第4版的书),没有摘抄原句,包含了很多我个人的思考和对 ...

  2. 数据库的OLE字段写入长二进制文件

    //'*************************************************************************************** //'函数:将数据 ...

  3. Xamarin AVD x86 问题

    inspired by https://stackoverflow.com/questions/34282243/error-while-starting-emulator/34282302#3428 ...

  4. mysql 命令行常用命令

    1.显示数据库列表.  show databases; 2.显示库中的数据表:  use mysql; show tables; 3.显示数据表的结构:  describe 表名; 4.建库:  cr ...

  5. Sq lServer触发器的使用

    创建表: CREATE TABLE [dbo].[GeneralRule]( [ID] [int] NOT NULL, ) NULL, [DeleteFlag] [int] NOT NULL ) CR ...

  6. SSH localhost免密不成功 + 集群状态显示Configured Capacity: 0 (0 KB)

    前一天运行hadoop一切安好,今天重新运行出现BUG.下面对遇到的bug.产生原因以及解决方法进行一下简单总结记录. [bug1]用ssh localhost免密登录时提示要输入密码. 原因分析:之 ...

  7. python 函数 动态参数 和嵌套

    1.动态参数 是可以接收任意的参数.一种方式, 1,位置的动态传参, 写法是: *参数名 接收的参数是tuple类型举个例子:def yue(*food): print(food)yue(" ...

  8. Bootstrap -- 模态框实现拖拽移动

    ### 这里实现这个效果 需要引入 jquery-ui.min.js类库 jquery-ui.min.css样式 使用它提供的draggable()方法实现 ### 菜鸟教程 http://www.r ...

  9. Android录制音频的三种方式

    对于录制音频,Android系统就都自带了一个小小的应用,可是使用起来可能不是特别的灵活.所以有提供了另外的俩种. 下边来介绍下这三种录制的方式; 1.通过Intent调用系统的录音器功能,然后在录制 ...

  10. 饿了么vue-cli3.0+cube-ui笔记

    1.目录结构 模板文件是public里的index.html,运行项目的时候,会引用src/main.js(入口文件) 详细文档在这里:https://cli.vuejs.org/zh/config/ ...