在PCIe链路可以正常工作之前,需要对PCIe链路进行链路训练,在这个过程中,就会用LTSSM状态机。LTSSM全称是Link Training and Status State Machine。这个状态机在哪里呢?它就在PCIe总线的物理层之中。
 
LTSSM状态机涵盖了11个状态,包括Detect, Polling, Configuration, Recovery, L0, L0s, L1, L2, Hot Reset, Loopback, Disable。这11个状态之间转换的逻辑,如下图,

这11个状态大致可以分为4大类:
(1) PCIe链路训练相关。正常的PCIe链路训练状态转换流程依次是,Detect->Polling->Configuration->L0. L0是PCIe链路可以正常工作的电源状态。
(2) PCIe链路重新训练相关。这个状态也称为Recovery。Recovery是一个非常重要的链路状态,进入这个状态的因素也很多,比如电源状态的变化,PCIe链路速率的变化等。
(3) 电源状态相关。PCIe总线的电源状态主要有两部分的内容。
 一是基于软件控制的PCI-PM电源管理机制,是系统软件通过修改寄存器中的电源管理字段,使PCIe设备进入D状态:D0,D1,D2,D3.
 
 
 二是基于硬件控制的ASPM(=Active State Power Management)电源管理机制,是基于硬件自主控制的链路电源管理机制,只有在PCIe设备处于D0状态是才可以启动ASPM机制,另外,与ASPM有关的链路状态有L0s,L1(包括L1.1和L1.2).
 
(4)其他相关。比如Hot Reset, Link Disable, Loopback等。
我们接下来对这11个状态分别作一个简单的介绍。
Detect
这是物理层的初始状态,仅在Gen1 2.5 GT/s速率下使用,或是从数据链路层转换而来,或是在reset之后,或者从其他状态(Disable, Polling, Configuration,Recovery等)转换。总之,Detect状态是PCIe链路训练的开端。此外,Detect,顾名思义,需要实现检测工作。因为在这个状态时,发送端TX需要检测接收端RX是否存在且可以正常工作,如果检测正常,才能进入其他状态。Detect状态主要包含了两个子状态:Detect.Quiet和Detect.Active.
(1)从其他状态或者Reset之后,物理层从Electrical Idle开始,此时,处于Detect.Quiet;
(2)当超过12ms或者所有Lane均退出Electrical Idle时,则从Dectect.Quiet转换进入Detect.Active。在这个状态就会开启检测RX工作。
 

判断RX是否存在的逻辑比较简单,就是通过一个“Detect logic”电路比较RC时间常数的大小。
(1) 当RX不存在时,RC时间常数较小。
 

 
(2) 当RX存在时,RC时间常数较大。
 

Polling

这个状态的目的是"对暗号",实现无障碍沟通。进入这个状态后,TX和RX之间通过发送TS1、TS2 OS序列来确定Bit Lock, Symbol Lock以及解决Lane极性反转的问题。
Bit Lock: 在Bit传输过程中,RX PLL锁定TX Clock频率,这个过程称为RX实现"Bit Lock"。
Symbol Lock: RX端串并转化器知道如何区别一个有效的10-bit Symbol,这个过程称为“Symbol Lock”. 这里用到的是COM控制符。
Polling状态主要包含了三个子状态:Polling.Active, Polling.Configuration, Polling.Compliance.
 

(1) Polling.Active:这是链路从Detect退出后进入的状态,在这个状态下,发送端需要在所有Lane至少发送1024个TS1序列,因为接收端需要通过接收到的TS1序列来实现Bit/Symbol Lock. 由于发送端和接收端不是同时退出Detect状态,所以,TS1序列交流可能不会同步。此时,链路出于Gen1(2.5GT/s), Symbol time=4ns(10b/2.5Gb/s), 发送1024个TS1序列(16 symbols)至少需要64us(1024*16*4ns).
(2) Polling.Configuration: 当发送端TX发送完至少1024个TS1并且接收端RX连续收到8个TS1或者TS2,此时TS1和TS2中的Link/Lane区域由PAD填充, 那么,链路进入Polling.Configuration状态。处于此状态,发送端停止发送TS1序列,改为发送TS2序列,此时Link/Lane区域仍然由PAD填充,这个过程也会完成极性反转的问题,为进入下一个状态作准备。
(3) Polling.Compliance: 这个状态主要是通过发送不同的Pattern来测试发送端以及设备连接是否符合Spec要求。
Configuration
这个状态工作内容很简单,就是通过发送TS1、TS2来确定Link/Lane number. 如下图,Configuration包含了6个子状态:Configuration.LinkWidth.Start,Configuration.LinkWidth.Accpet,Configuration.Lanenum.Wait,Configuration.Lanenum.Accpet,Configuration.Complete, Configuration.Idle.
 

由于Configuration状态下,发送端和接收端已经确认可以正常通信,所以,我们结合实例来看一下Downstream和Upstream的状态转换过程。
(1) Link Number Negotiation
Downstream在TS1中设定Link number, 此时Lane number=PAD,并发送给Upstream.
 

而Upstream回的第一个TS1中,Link num仍然是PAD。此时,Upstream也处于Configuration.LinkWidth.Start状态。
 

之后Upstream回的TS1中Link number则是设定值,此时, Upstream率先进入Configuration.LinkWidth.Accept状态。
 

到这里,Link Number Negotiation就完成了。
(2) Lane Number Negotiation
当Downstream看到Upstream返回的TS1中Link number已经是设定值,那么就认为Link num已经协商成功,然后就开始准备设定Lane number,此时Downstream链路也接着进入Configuration.LinkWidth.Accept状态. 由于在录这个Trace时有过滤重复的TS序列,所以,我们看到一个TS1序列对应了三个状态:Configuration.LinkWidth.Accept,Configuration.LaneNum.Wait,Configuration.LaneNum.Accept. 这个三个状态发送的TS1序列一样,Link number和Lane number都已设定。
 

当Upstream收到Downstream设定Lane number的TS序列之后,也很快进入了Configuration.LaneNum.Accept状态。
 

与Lane number相关的三个状态之间相互转换逻辑如下:Downstream Vs Upstream.
 
 

到这里,双方Lane number协议就完成了。
(3) Confirm Lane/Link Number
最后一步,过程就很简单了,双方通过发送TS2序列,对之前设定的Link/Lane number进行确认,这个过程,LTSSM处于Configuration.Complete. 确认没有问题之后,就准备进入下一个状态。
 

L0
当进入这个状态时,PCIe链路就可以愉快的开始正常工作了。这个状态可以传输TLP,DLLP等报文。
Recovery
当PCIe链路需要重新训练时,进入Recovery状态。主要有以下几种情况:
(1) PCIe链路信号发现error,需要调整Bit Lock和Symbol Lock;
(2) 从L0s或者L1低功耗电源状态退出;
(3) Speed Change。因为第一次进入L0状态时,速率是2.5GT/s. 当需要进行速率调整5.0GT/s或者8.0GT/s时,需要进入Recovery状态进行Speed Change. 这个阶段,Bit Lock、Symbol Lock等都需要重新获取;
(4) 需要重新调整PCIe链路的Width;
(5) 软件触发retrain操作;
(6) 仅在Gen3和Gen4,需要重新进行Equalization。
Recovery子状态转换逻辑如下图:
 
 
我们结合一个上电过程中Gen1提速至Gen3的时序来解读一下Recovery状态的转换,如下图:

a. Downstream率先进入Recovery.RcvrLock状态, 之后向Upstream持续发送TS1并且将speed_change bit设置为1;
b. Upstream端看到TS1进来之后,也跟着进入Recovery.RcvrLock状态,同时回传TS1序列,不过此时,speed_change bit仍为0. 当Upstream接收达到连续8个TS1且speed_change bit设置为1,这时,Upsteam回传的TS1、TS2中speed_change bit设置为1,并告诉Downstream建议工作速率,接着进入Recovery.RcvrCfg状态;
c. Downstream收到Upstream建议的速率反馈之后,也返回TS2序列,并发送EIOS序列,准备进入Electrical Idle. 此时,LTSSM处于Recovery.RcvrCfg状态;
d. 之后,Downstream和Upstream相继进入Electrical Idle, LTSSM处于Recovery.Speed状态;
e. 经过一段时间timeout(Spec要求至少800ns, 小编这个Trace中是~8us),Upstream发送EIEOS, 退出Electrical Idle, 尝试跑最高速率8GT/s;
f. 接着Downstream也退出Electrical Idle, 尝试跑试跑最高速率8GT/s;
g. 最后,双方开始进行EQ。EQ之后,PCIe链路就可以回到正常工作状态。
L0s/L1/L2
这三个状态,主要是低功耗电源管理状态,在这里不再展开了,具体可以参考Spec.
Hot Reset
当某个PCIe设备发生错误时,我们有时候需要通过软件的方式对设备进行复位,这个方式就是Hot Reset。可以通过设置Bridge Control寄存器中的Secondary Bus Reset来触发Hot Reset.
 
Hot Reset的指令是在TS1序列中体现,如下图,
 

Hot Reset触发之后,LTSSM会进入Recovery和Hot Reset状态,之后会到Detect状态,PCIe链路开始重新训练。
 

Disabled
用户可以通过设置修改Link Control寄存器,让PCIe链路出于Disabled状态。
 

另外,如果我们把设备移除之后,同样也进入Disabled状态。
当退出Disabled状态后,LTSSM回到Dectect,PCIe链路重新训练。
 

Loopback
这个状态仅用于debug测试,一般情况不会遇到,在这里不再展开,有兴趣的话可以参考PCIe Spec

PCIE training的更多相关文章

  1. 4.1 PCIe总线的基础知识

    与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端.PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通 ...

  2. PCIE错误分析

    前面的文章提到过,PCI总线中定义两个边带信号(PERR#和SERR#)来处理总线错误.其中PERR#主要对应的是普通数据奇偶校检错误(Parity Error),而SERR#主要对应的是系统错误(S ...

  3. PCIe 驱动流程(LTSSM)

     本次的工作是完成刚流片的FPGA中PCIe IP核的bring up,也就是芯片的中PCIe的第一个使用者,将PCIe IP核正常使用起来,并配合公司的EDA团队,完成PCIe IP核到用户的呈现. ...

  4. PCIE协议解析 synopsys IP loopback 读书笔记(1)

    1      Overview Core支持单个Pcie内核的Loopback功能,该功能主要为了做芯片验证,以及在没有远程接收器件的情况下完成自己的回环.同时,Core也支持有远程接收器件的loop ...

  5. PCIE 调试过程记录

    遇到的问题 PCIE link不稳定 配置空间读写正常,Memory mapping空间读写异常 缘由 之前对PCIE的认识一直停留在概念的阶段,只知道是一个高速通讯协议,主要用于板内.板间的高速BU ...

  6. 浅析PCIe链路LTSSM状态机

    我们知道,在PCIe链路可以正常工作之前,需要对PCIe链路进行链路训练,在这个过程中,就会用LTSSM状态机.LTSSM全称是Link Training and Status State Machi ...

  7. 转:PCIe基础知识

    PCIe基础知识   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/zqixiao_09/article/details/51842542 PCIe ...

  8. 如何保证FPGA PCIe唤醒能满足PC的100ms 的时间要求(Autonomous Mode)?

    原创By DeeZeng [ Intel FPGA笔记 ]  PC 需要PCIe设备在 100ms 内启动,这样PC 才能扫描到PCIe 设备.对于 FPGA PCIe 板卡,同样也需要满足这个时间要 ...

  9. 012 PCIe总线的基础知识

    一.PCIe总线的基础知识 与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端.PCIe总线除了总线链路外,还具有多 ...

随机推荐

  1. Logic and Proofs--离散数学

    Propositions: A proposition is a declarative sentence(that is, a sentence that declares a fact ) tha ...

  2. SLES Install

    SUSE Linux Enterprise Server 12-SP3:zypper in -t patch SUSE-SLE-SERVER-12-SP3-2017-2036=1 To bring y ...

  3. php查询mysql数据库

    1.连接数据库,写成一个php,其他文件直接include <?php $connect = mysql_connect("ip地址","用户",&quo ...

  4. (详细)华为荣耀8X JSN-AL00的usb调试模式在哪里开启的教程

    经常我们使用Pc链接安卓手机的时候,如果手机没有开启usb开发者调试模式,Pc则没办法成功识别我们的手机,有时候,我们使用的一些功能比较强的的工具比如之前我们使用的一个工具引号精灵,老版本就需要开启u ...

  5. JavaWeb——<c:forEach varStatus="status">

    我们常会用c标签来遍历需要的数据,为了方便使用,varStatus属性可以方便我们实现一些与行数相关的功能,如:奇数行.偶数行差异:最后一行特殊处理等等.先就varStatus属性常用参数总结下: $ ...

  6. Android 开发 8.0版本启动Service的方法

    前言  google在更新Android8.0后对Service的权限越发收紧.导致目前想要启动服务必需实现服务的前台化(否则在服务启动5秒后,系统将自动报错).下面我们就来看看如何在8.0上启动服务 ...

  7. py库:os、shutil、pathlib

    https://www.cnblogs.com/MnCu8261/p/5494807.html shutil模块 http://blog.csdn.net/rozol/article/details/ ...

  8. html5自带表单验证

    起因:今天无意中发现chrome的input框自带表单验证!于是就去试试firefox,惊奇的发现也有自带的验证提示,只不过两者的样式不一样 chrome中的样子: firefox中的样子: 发散:具 ...

  9. zabbix3.0.4 探索主机Discovery自动发现agent主机和zabbix-agent自动注册详细图文教程

    Zabbix 自动发现(Discovery)功能使用 随着监控主机不断增多,有的时候需要添加一批机器,特别是刚用zabbix的运维人员需要将公司的所有服务器添加到zabbix,如果使用传统办法去单个添 ...

  10. 【转】【JAVA资料免费下载】158个JAVA免豆精品资料汇总——下载目录

    附件完整版下载地址: http://down.51cto.com/data/431561 附件部分预览~ java中国移动收费系统[源代码] http://down.51cto.com/data/70 ...