题目描述

高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友。这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值。作为计算机竞赛教练的scp大老板,想知道如何分配可以使得全班的喜悦值总和最大。

输入

第一行两个正整数n,m。接下来是六个矩阵第一个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择文科获得的喜悦值。第二个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择理科获得的喜悦值。第三个矩阵为n-1行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择文科获得的额外喜悦值。第四个矩阵为n-1行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择理科获得的额外喜悦值。第五个矩阵为n行m-1列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择文科获得的额外喜悦值。第六个矩阵为n行m-1列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择理科获得的额外喜悦值。

输出

输出一个整数,表示喜悦值总和的最大值

样例输入

1 2
1 1
100 110
1
1000

样例输出

1210
【样例说明】
两人都选理,则获得100+110+1000的喜悦值。
【数据规模】
对于100%以内的数据,n,m<=100 所有喜悦值均为小于等于5000的非负整数
 
这道题和BZOJ3894类似,同样将每个人与源汇点分别相连,流量为选文/理的收益。对于每个组合收益新建点,并与相关的人连边,流量为$INF$,如果是需要同时选文就与源点连边,反之与汇点连边,流量为对应收益。答案就是总收益$-$最小割。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
#define ll long long
using namespace std;
int head[60000];
int to[300000];
int next[300000];
int val[300000];
int d[60000];
int q[60000];
int back[60000];
int S,T;
int x;
int n,m;
int tot=1;
int ans;
void add(int x,int y,int v)
{
tot++;
next[tot]=back[x];
back[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=back[y];
back[y]=tot;
to[tot]=x;
val[tot]=0;
}
bool bfs(int S,int T)
{
int r=0;
int l=0;
memset(d,-1,sizeof(d));
q[r++]=T;
d[T]=2;
while(l<r)
{
int now=q[l];
for(int i=back[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i^1]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
if(d[S]==-1)
{
return false;
}
else
{
return true;
}
}
int dfs(int x,int flow)
{
if(x==T)
{
return flow;
}
int now_flow;
int used=0;
for(int &i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]-1&&val[i]!=0)
{
now_flow=dfs(to[i],min(flow-used,val[i]));
val[i]-=now_flow;
val[i^1]+=now_flow;
used+=now_flow;
if(now_flow==flow)
{
return flow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
int dinic()
{
int res=0;
while(bfs(S,T))
{
memcpy(head,back,sizeof(back));
res+=dfs(S,0x3f3f3f3f);
}
return res;
}
int find(int x,int y)
{
return (x-1)*m+y;
}
int main()
{
scanf("%d%d",&n,&m);
S=n*m*5+1;
T=n*m*5+2;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&x);
add(S,find(i,j),x);
ans+=x;
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&x);
add(find(i,j),T,x);
ans+=x;
}
}
for(int i=1;i<n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&x);
ans+=x;
add(S,n*m+find(i,j),x);
add(n*m+find(i,j),find(i,j),INF);
add(n*m+find(i,j),find(i+1,j),INF);
}
}
for(int i=1;i<n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&x);
ans+=x;
add(2*n*m+find(i,j),T,x);
add(find(i,j),2*n*m+find(i,j),INF);
add(find(i+1,j),2*n*m+find(i,j),INF);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<m;j++)
{
scanf("%d",&x);
ans+=x;
add(S,3*n*m+find(i,j),x);
add(3*n*m+find(i,j),find(i,j),INF);
add(3*n*m+find(i,j),find(i,j+1),INF);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<m;j++)
{
scanf("%d",&x);
ans+=x;
add(4*n*m+find(i,j),T,x);
add(find(i,j),4*n*m+find(i,j),INF);
add(find(i,j+1),4*n*m+find(i,j),INF);
}
}
printf("%d",ans-dinic());
}

BZOJ2127happiness——最小割的更多相关文章

  1. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  2. bzoj2127happiness(最小割)

    一眼最小割. 一种比较好想的建图方式如下: 连源点表示学文,连汇点表示学理,然后adde(S,id(i,j),a[i][j]),adde(id(i,j),T,b[i][j]):对于相邻座位选择同一科的 ...

  3. BZOJ2132 圈地计划 【最小割】

    题目 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解, 这块土地是一块矩形的区域,可以纵横划分 ...

  4. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  5. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  6. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  7. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  8. bzoj1412最小割

    太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...

  9. 【BZOJ1497】[NOI2006]最大获利 最小割

    裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...

随机推荐

  1. JVM总括:目录

    JVM总括:目录 JVM总括一-JVM内存模型 JVM总括二-垃圾回收:GC Roots.回收算法.回收器 JVM总括三-字节码.字节码指令.JIT编译执行 JVM总括四-类加载过程.双亲委派模型.对 ...

  2. c++入门之 再话类

    对于类,其结构并不难,但要理解其设计思想也并不容易,在此,我们可以通过下面的代码进一步理解和使用类: # ifndef VECTOR_H_ # define VECTOR_H_ # include & ...

  3. (第十三周)评论Final发布I

    本人所在组:奋斗吧兄弟 按课上展示的顺序对每组进行点评: 1.  Nice 项目:约跑软件 展示的时候使用了摄像头投影,提高了演示效果,软件的背景进行了美化,表现好了很好.解决了我们组提出的文字多挤没 ...

  4. es6在网页中模块引入的方法

    前言: 以前,当然包括现在的大部分js引入,我们都是利用<script></script>这种全局的方式进行引入,当然这种弊端还是用的,比如这样直接利用script引入的话,会 ...

  5. PS调出怀旧雨中特写的非主流照片

    原图 最终效果 一.打开原图素材,按Ctrl + ALt + ~ 调出高光选区,按Ctrl + Shift + I 反选,然后创建曲线调整图层,适当调暗一点. 二.合并所有图层,点通道面板,选择蓝色通 ...

  6. adb通过wifi连接android设备

    问题背景 近期的项目测试中,需要将移动设备与厂商机器进行usb连接视频传输(投屏).测试过程中需要定位问题,经常需要查看实时日志,移动设备已经和厂商机器usb连接投屏,无法用usb连接到PC,那么有什 ...

  7. Python之异常处理(执行python文件时传入参数)

    使用sys模块 使用sys模块里的argv参数,用来保存参数值 import sys #sys.argv的作用是获取到运行python文件时,传入的参数 #默认如果运行python文件不传参数,arg ...

  8. JavaScript中防止重复提交

    有这么一种情况: 页面有一个按钮,点击之后会触发Ajax请求,但是用户在点击之后,不知道是否点成功了,于是又点了一下,如果不加处理的话,就会进行两次Ajax请求,并且请求的数据都是一样的,对后端的程序 ...

  9. Column 'parent_id' specified twice

    Hibernate Column 'parent_id' specified twice问题解决--insertable = false, updatable = false的使用 - shendeg ...

  10. 启动Tomcat的时候8080被占用

    异常来源:启动Tomcat服务器报错: Several ports (8080, 8009) required by Tomcat v7.0 Server at localhost are alrea ...