传送门:>Here<

题意:给出长度相等的数组a和b,定义他们的和为$\dfrac{a_1+a_2+...+a_n}{b_1+b_2+...+b_n}$。现在可以舍弃k对元素(一对即$a[i]和b[i]$),问最大的和是多少?

解题思路

01分数规划入门题(并没有学过,看到hy大佬在刷因此也去学了下)

问题可以转化为数组中的每个元素选或不选,也就可以认为每一个元素都乘上一个$x[i], \ x[i] ∈ \{0, 1\}$

因此问题可以转化为$ans = \dfrac{\sum\limits_{i = 1}^{n}a[i] * x[i]}{\sum\limits_{i = 1}^{n}b[i] * x[i]}$

将除法转化为加法$\sum\limits_{i = 1}^{n}a[i] * x[i] - ans * \sum\limits_{i = 1}^{n}b[i] * x[i] = 0$

合并得$\sum\limits_{i = 1}^{n}(a[i]-ans*b[i])*x[i] = 0$

当$x$数组的取值确定时,可以发现函数$f(r) = \sum\limits_{i = 1}^{n}(a[i]-r*b[i])*x[i]$是减函数,因此可以二分$r$。当前取到的$r$能够满足$\sum\limits_{i = 1}^{n}(a[i]-r*b[i])*x[i] \geq 0$即为可行,为了满足此条件,肯定要让选择的那些元素的和越大越好,因此可以建立数组$d[i] = a[i]-r*b[i]$并排序,选择最大的加起来验证是否大于等于0.

Code

long long

/*By DennyQi 2018.8.12*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
#define int long long
const int MAXN = ;
const int MAXM = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) + (x << ) + c - '', c = getchar(); return x * w;
}
struct Score{
int idx; double sc;
}s[MAXN];
int N,K;
int a[MAXN],b[MAXN];
double L,R,Mid,d[MAXN];
inline bool comp(const Score& a, const Score& b){
return a.sc < b.sc;
}
inline bool judge(double _r){
for(int i = ; i <= N; ++i){
d[i] = (double)((double)(a[i]) - (double)(1.0*_r*b[i]));
}
sort(d+,d+N+);
double res = 0.0;
for(int i = N; i > K; --i){
res += d[i];
}
return res >= 0.0;
}
#undef int
int main(){
#define int long long
for(;;){
N = r, K = r;
if(!N && !K) break;
for(int i = ; i <= N; ++i) a[i] = r;
for(int i = ; i <= N; ++i) b[i] = r;
L = 0.000, R = 9999999999.999;
while(R - L >= 1e-){
Mid = (L + R) / 2.000;
if(judge(Mid)){
L = Mid;
}
else{
R = Mid;
}
}
for(int i = ; i <= N; ++i){
s[i] = (Score){i, (double)((double)(a[i]) - (double)(1.0*L*b[i]))};
}
sort(s+,s+N+,comp);
int fz=,fm=;
for(int i = N; i > K; --i){
fz += a[s[i].idx];
fm += b[s[i].idx];
}
double rs = (double)fz/(double)fm;
printf("%.0f\n", rs * );
}
return ;
}

[POJ2976] Dropping tests的更多相关文章

  1. POJ2976 Dropping tests(二分+精度问题)

    ---恢复内容开始--- POJ2976 Dropping tests 这个题就是大白P144页的一个变形,二分枚举x,对a[i]-x*b[i]从大到小进行排序,选取前n-k个判断和是否大于等于0,若 ...

  2. POJ2976 Dropping tests —— 01分数规划 二分法

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  3. poj2976 Dropping tests(01分数规划 好题)

    https://vjudge.net/problem/POJ-2976 又是一波c++AC,g++WA的题.. 先推导公式:由题意得 Σa[i]/Σb[i]<=x,二分求最大x.化简为Σ(a[i ...

  4. POJ2976 Dropping tests(01分数规划)

    题目大概说给n个二元组Ai和Bi,要去掉k个,求余下的100*∑Ai/∑Bi的最大值. 假设要的最大的值是ans,令Di=Ai-ans*∑Bi,对Di排序取最大的n-k个,如果∑Ai-ans*∑Bi& ...

  5. POJ2976 Dropping tests 01分数规划

    裸题 看分析请戳这里:http://blog.csdn.net/hhaile/article/details/8883652 #include<stdio.h> #include<a ...

  6. [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)

    题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...

  7. POJ2976 Dropping tests(01分数规划)

    题意 给你n次测试的得分情况b[i]代表第i次测试的总分,a[i]代表实际得分. 你可以取消k次测试,得剩下的测试中的分数为 问分数的最大值为多少. 题解 裸的01规划. 然后ans没有清0坑我半天. ...

  8. 【POJ2976】Dropping Tests(分数规划)

    [POJ2976]Dropping Tests(分数规划) 题面 Vjudge 翻译在\(Vjudge\)上有(而且很皮) 题解 简单的\(01\)分数规划 需要我们做的是最大化\(\frac{\su ...

  9. Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8176   Accepted: 2862 De ...

随机推荐

  1. NLP是什么

    NLP是什么 而在计算机领域, NLP(Natural Language Processing),也就是人们常说的「自然语言处理」,就是研究如何让计算机读懂人类语言. 这包括,既要能让计算机理解自然语 ...

  2. 【转】ubuntu 双机热备

    1.关于软件安装 sudo apt-get install libssl-dev sudo apt-get install openssl sudo apt-get install libpopt-d ...

  3. Karen and Game CodeForces - 816C (暴力+构造)

    On the way to school, Karen became fixated on the puzzle game on her phone! The game is played as fo ...

  4. 用C# BigInteger实现的BigDecimal类,终于可以直接做四则运算了。

    https://code.google.com/p/dotnet-big-decimal/ 这是个BigDecimal类的开源项目,支持Operators +, - and *. 俺给改了改,加上了除 ...

  5. 解决远程连接mysql很慢的方法(网络正常)

    最近用mysql命令行或者JDBC远程连接mysql速度很慢,而且远大于ping时间.上网搜了一下,解决方案如下: 在/etc/mysql/my.cnf文件的[mysqld]部分加入:skip-nam ...

  6. use redis instance in docker hub

    redis - Docker Hubhttps://hub.docker.com/_/redis

  7. PHP之CLI模式

    转载: http://www.cnblogs.com/zcy_soft/archive/2011/12/10/2283437.html 所有的PHP发行版,不论是编译自源代码的版本还是预创建的版本,都 ...

  8. Laravel 核心--Facades 门面

    Laravel 核心--Facades 门面 伊Summer 关注  0.1 2017.08.12 19:07* 字数 2017 阅读 1089评论 0喜欢 5 介绍 Facades 为应用的 IoC ...

  9. PostgreSQL 安装了contrib 之后 登录失败的问题

    1. 自己之前只是安装了 pg 10.6 2. 开发同事 需要用到 一个extensions 叫做 uuid-ossp 3. 执行报错  详情见昨天的blog 4. 然后执行了升级操作 结果 pg10 ...

  10. w3c JS测试

    到W3c的js测试里面溜达了一圈: 做错了几道题: 外部脚本必须包含<script>标签吗? 否!! 这里的外部脚本是指xx.js这个文件,在文件中写js代码是不需要包含script标签的 ...