【THUWC2017】随机二分图(动态规划)
【THUWC2017】随机二分图(动态规划)
题面
题解
如果每天边的限制都是\(0.5\)的概率出现或者不出现的话,可以把边按照二分图左侧的点的编号排序,然后设\(f[i][S]\)表示左边的前\(i\)个点中,匹配了右侧的点集\(S\)的方案数。每次枚举一条边进行转移。为了防止在点集中重复转移,强行只用\(lowbit(S)\)的出边进行转移。
现在有了边组。还是把他们拆成两条概率为\(0.5\)的边。
然后发现第二类边组少算了\(0.25\)的贡献,第三类多算了\(0.25\)的贡献。
把两条边强制放在一起算补进来贡献就好了。
#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
#define pi pair<int,int>
#define fr first
#define sd second
#define mp make_pair
const int MOD=1000000007,inv2=500000004,inv4=250000002;
map<pi,int> f;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int tot,n,m,bin[20];
pi E[1000];int W[1000];
int lb(int x){return x&(-x);}
bool In(int S,int T){return (S|T)==T;}
int dfs(int S,int T)
{
if(!S&&!T)return 1;
if(f.find(mp(S,T))!=f.end())return f[mp(S,T)];
int ret=0;
for(int i=1;i<=tot;++i)
if(In(E[i].fr,S)&&In(E[i].sd,T)&&(E[i].fr&lb(S)))
ret=(ret+1ll*W[i]*dfs(S^E[i].fr,T^E[i].sd))%MOD;
return f[mp(S,T)]=ret;
}
int main()
{
n=read();m=read();
for(int i=1;i<=n+1;++i)bin[i]=1<<(i-1);
for(int i=1;i<=m;++i)
{
int opt=read(),x=read(),y=read();
E[++tot]=mp(bin[x],bin[y]);W[tot]=inv2;
if(opt==0)continue;
int u=read(),v=read();
E[++tot]=mp(bin[u],bin[v]);W[tot]=inv2;
if(x==u||v==y)continue;
E[++tot]=mp(bin[x]|bin[u],bin[y]|bin[v]);
W[tot]=opt==1?inv4:MOD-inv4;
}
int ans=1ll*bin[n+1]*dfs(bin[n+1]-1,bin[n+1]-1)%MOD;
printf("%d\n",ans);
return 0;
}
【THUWC2017】随机二分图(动态规划)的更多相关文章
- [THUWC2017]随机二分图
题目大意 给一张二分图,有左部点和右部点. 有三种边,第一种是直接从左部点连向右部点,出现概率为50%. 第二种边一组里有两条边,这两条边同时出现或者不出现,概率都是50%. 第三种边一组里有两条边, ...
- Luogu4547 THUWC2017 随机二分图 概率、状压DP
传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...
- BZOJ5006 THUWC2017随机二分图(概率期望+状压dp)
下称0类为单边,1类为互生边,2类为互斥边.对于一种匹配方案,考虑其出现的概率*2n后对答案的贡献,初始为1,如果有互斥边显然变为0,否则每有一对互生边其贡献*2.于是有一个显然的dp,即设f[S1] ...
- THUWC2017随机二分图
题面链接 洛谷 sol 唯一的重点是拆边... 0的不管,只看1.2. 先无论如何把两条边的边权赋为\(0.5\)然后我们发现如果两个都选了. 对于第一种边,我们发现如果\(\frac{1}{2} * ...
- [BZOJ5006][LOJ#2290][THUWC2017]随机二分图(概率+状压DP)
https://loj.ac/problem/2290 题解:https://blog.csdn.net/Vectorxj/article/details/78905660 不是很好理解,对于边(x1 ...
- [LOJ2290] [THUWC2017] 随机二分图
题目链接 LOJ:https://loj.ac/problem/2290 洛谷:https://www.luogu.org/problemnew/show/P4547 Solution 首先考虑只有第 ...
- [思路题][LOJ2290][THUWC2017]随机二分图:状压DP+期望DP
分析 考虑状压DP,令\(f[sta]\)表示已匹配状态是\(sta\)(\(0\)代表已匹配)时完美匹配的期望数量,显然\(f[0]=1\). 一条边出现了不代表它一定在完美匹配内,这也导致很难去直 ...
- P4547 [THUWC2017]随机二分图(状压,期望DP)
期望好题. 发现 \(n\) 非常小,应该要想到状压的. 我们可以先只考虑 0 操作. 最难的还是状态: 我们用 \(S\) 表示左部点有哪些点已经有对应点, \(T\) 表示右部点有哪些点已经有对应 ...
- 题解 洛谷 P4547 【[THUWC2017]随机二分图】
根据题意,题目中所求的即为所有\(n!\)种完美匹配的各自的出现概率之和再乘上\(2^n\)的值. 发现\(n\)很小,考虑状压\(DP\).设\(f_{S,T}\)为左部图匹配情况为\(S\),右部 ...
随机推荐
- PS调出唯美冷色情侣婚纱写真照
一.打开PS原片,原片是一张JPG格式的片子 色温较高整个画面较红离对着上面的我们标准的韩式色调我们来进行调节吧 ,我就不打太多文字解释一些基本常规了 二.韩式婚纱内景喜欢加点烟雾.其实我本人是不太喜 ...
- 无法从带有索引像素格式的图像创建graphics对象
大家在用 .NET 做图片水印功能的时候, 很可能会遇到 “无法从带有索引像素格式的图像创建graphics对象”这个错误,对应的英文错误提示是“A Graphics object cannot be ...
- 爬虫——cookies池的搭建
https://github.com/Python3WebSpider/cookiesPool
- MySQL数据库导入错误:ERROR 1064 (42000) 和 ERROR at line xx:
https://www.cnblogs.com/yeahgis/p/4358973.html mysql -hlocalhost -uroot -proot --default-character-s ...
- CMake--静态库与动态库构建
小结内容 建立一个静态库和动态库,提供 HelloFunc 函数供其他程序编程使用, HelloFunc 向终端输出Hello World 字符串. 安装头文件与共享库. 1.代码与CMakeList ...
- laravel实现批量添加数据
在使用laravel eloquent进行数据库操作的时候惊讶的发现这货居然不支持批量添加,看到网上很多人在循环里进行数据库插入操作来实现批量添加,我想说这样做是很损失性能滴!好在框架的DB门面里的i ...
- Day 4-6 xml处理
xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过,古时候,在json还没诞生的黑暗年代,大家只能选择用xml呀,至今很多传统公司如金融行业的很多系统的 ...
- Linux 系统命令行入门基础
Linux 命令行组成结构 打包及压缩命令 tar 解压压缩包:
- django之路由层
一 Django中路由的作用 二 简单的路由配置 三 有名分组 四 路由分发 五 反向解析 六 名称空间 七 django2.0版的path 一 Django中路由的作用 URL配置(URLconf) ...
- Artifact project04:war :Error during artifact deployment. See server log for details
困扰了我好长时间,我的错误是 先 Run clean 再package就成功了.