【THUWC2017】随机二分图(动态规划)

题面

BZOJ

洛谷

题解

如果每天边的限制都是\(0.5\)的概率出现或者不出现的话,可以把边按照二分图左侧的点的编号排序,然后设\(f[i][S]\)表示左边的前\(i\)个点中,匹配了右侧的点集\(S\)的方案数。每次枚举一条边进行转移。为了防止在点集中重复转移,强行只用\(lowbit(S)\)的出边进行转移。

现在有了边组。还是把他们拆成两条概率为\(0.5\)的边。

然后发现第二类边组少算了\(0.25\)的贡献,第三类多算了\(0.25\)的贡献。

把两条边强制放在一起算补进来贡献就好了。

#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
#define pi pair<int,int>
#define fr first
#define sd second
#define mp make_pair
const int MOD=1000000007,inv2=500000004,inv4=250000002;
map<pi,int> f;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int tot,n,m,bin[20];
pi E[1000];int W[1000];
int lb(int x){return x&(-x);}
bool In(int S,int T){return (S|T)==T;}
int dfs(int S,int T)
{
if(!S&&!T)return 1;
if(f.find(mp(S,T))!=f.end())return f[mp(S,T)];
int ret=0;
for(int i=1;i<=tot;++i)
if(In(E[i].fr,S)&&In(E[i].sd,T)&&(E[i].fr&lb(S)))
ret=(ret+1ll*W[i]*dfs(S^E[i].fr,T^E[i].sd))%MOD;
return f[mp(S,T)]=ret;
}
int main()
{
n=read();m=read();
for(int i=1;i<=n+1;++i)bin[i]=1<<(i-1);
for(int i=1;i<=m;++i)
{
int opt=read(),x=read(),y=read();
E[++tot]=mp(bin[x],bin[y]);W[tot]=inv2;
if(opt==0)continue;
int u=read(),v=read();
E[++tot]=mp(bin[u],bin[v]);W[tot]=inv2;
if(x==u||v==y)continue;
E[++tot]=mp(bin[x]|bin[u],bin[y]|bin[v]);
W[tot]=opt==1?inv4:MOD-inv4;
}
int ans=1ll*bin[n+1]*dfs(bin[n+1]-1,bin[n+1]-1)%MOD;
printf("%d\n",ans);
return 0;
}

【THUWC2017】随机二分图(动态规划)的更多相关文章

  1. [THUWC2017]随机二分图

    题目大意 给一张二分图,有左部点和右部点. 有三种边,第一种是直接从左部点连向右部点,出现概率为50%. 第二种边一组里有两条边,这两条边同时出现或者不出现,概率都是50%. 第三种边一组里有两条边, ...

  2. Luogu4547 THUWC2017 随机二分图 概率、状压DP

    传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...

  3. BZOJ5006 THUWC2017随机二分图(概率期望+状压dp)

    下称0类为单边,1类为互生边,2类为互斥边.对于一种匹配方案,考虑其出现的概率*2n后对答案的贡献,初始为1,如果有互斥边显然变为0,否则每有一对互生边其贡献*2.于是有一个显然的dp,即设f[S1] ...

  4. THUWC2017随机二分图

    题面链接 洛谷 sol 唯一的重点是拆边... 0的不管,只看1.2. 先无论如何把两条边的边权赋为\(0.5\)然后我们发现如果两个都选了. 对于第一种边,我们发现如果\(\frac{1}{2} * ...

  5. [BZOJ5006][LOJ#2290][THUWC2017]随机二分图(概率+状压DP)

    https://loj.ac/problem/2290 题解:https://blog.csdn.net/Vectorxj/article/details/78905660 不是很好理解,对于边(x1 ...

  6. [LOJ2290] [THUWC2017] 随机二分图

    题目链接 LOJ:https://loj.ac/problem/2290 洛谷:https://www.luogu.org/problemnew/show/P4547 Solution 首先考虑只有第 ...

  7. [思路题][LOJ2290][THUWC2017]随机二分图:状压DP+期望DP

    分析 考虑状压DP,令\(f[sta]\)表示已匹配状态是\(sta\)(\(0\)代表已匹配)时完美匹配的期望数量,显然\(f[0]=1\). 一条边出现了不代表它一定在完美匹配内,这也导致很难去直 ...

  8. P4547 [THUWC2017]随机二分图(状压,期望DP)

    期望好题. 发现 \(n\) 非常小,应该要想到状压的. 我们可以先只考虑 0 操作. 最难的还是状态: 我们用 \(S\) 表示左部点有哪些点已经有对应点, \(T\) 表示右部点有哪些点已经有对应 ...

  9. 题解 洛谷 P4547 【[THUWC2017]随机二分图】

    根据题意,题目中所求的即为所有\(n!\)种完美匹配的各自的出现概率之和再乘上\(2^n\)的值. 发现\(n\)很小,考虑状压\(DP\).设\(f_{S,T}\)为左部图匹配情况为\(S\),右部 ...

随机推荐

  1. B-Tree 和 B+Tree

    B-Tree和B+Tree 本文来自 Hubery_James 的CSDN 博客 ,全文地址请点击:原文地址-干货满满 B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索 ...

  2. 福州大学软件工程1816 | W班 第7次作业成绩排名

    写在前面 汇总成绩排名链接 1.作业链接 第七次作业--项目需求分析(团队) 2.评分准则 本次作业映射总分为100分+贡献度得分,由以下部分组成: 引言(5 points) . 用户场景(15 po ...

  3. asp.net mvc area实现多级controller和多级view

    经常需要描述这样的项目结构 ~:. //web根目录├─.admin   //管理员功能目录│  └─index.html    //管理员目录页面├─.user                  / ...

  4. JS XMLHttpRequesst对象 http post的五种请求状态

    记录一下js中对http请求的几种状态,下附代码 readyState 存有 XMLHttpRequest 的状态.从 0 到 4 发生变化. 0: 请求未初始化 1: 服务器连接已建立 2: 请求已 ...

  5. Python3练习题 035:Project Euler 007:第10001个素数

    import time def f(x): #判断 x 是否为素数,返回bool值 if x == 2: return True elif x <= 1: return False else: ...

  6. Linux bc 命令简单学习

    1. bash里面能够实现比较简单的四则运算 echo $((*)) 注意是 双括号+ $ 地址符号. 2. 但是比较复杂的 可能就难以为继了 比如不支持精度 3. 所以这里面需要使用 bc 命令来执 ...

  7. day 7 -1 进程理论知识

    一.进程的定义 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础.在早期面向进程设计的计算机结构中,进程是程序的基本执行实 ...

  8. java 中Excel的导入导出

    部分转发原作者https://www.cnblogs.com/qdhxhz/p/8137282.html雨点的名字  的内容 java代码中的导入导出 首先在d盘创建一个xlsx文件,然后再进行一系列 ...

  9. 使用javaWeb的二大(Listener、Filter)组件实现分IP统计访问次数

    分析: 统计工作需要在所有资源之前都执行,那么就可以放到Filter中. 我们这个过滤器不打算做拦截操作!因为我们只是用来做统计 用什么东西来装载统计的数据.Map<String,Integer ...

  10. 在Linq to sql 和 Entity framework 中使用lambda表达式实现left join

    在Linq to sql 和 Entity framework 中使用lambda表达式实现left join 我们知道lambda表达式在Linq to sql 和 Entity framework ...