LOJ2255. 「SNOI2017」炸弹 (线段树)
本文为线段树做法
(听说可以tarjan缩点+拓扑?
感觉差不多。。而且这样看起来方便很多
找到左端点的过程可以看作
点 -> 区间内lowerbound最小的点 -> lowerbound -> 区间内lowerbound最小的点 -> lowerbound -> ......
所以直接维护每个点lowerbound,线段树维护下就好啦
右端点同理
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
const int N = 5e5 + 5;
const long long P = 1e9 + 7;
const int inf = 0x3f3f3f3f;
int n, m;
long long pos[N], rad[N];
int L[N], R[N];
long long ans;
struct Seg{
int lm[N << 2], rm[N << 2];
void update(int rt){
lm[rt] = min(lm[rt << 1], lm[rt << 1 | 1]);
rm[rt] = max(rm[rt << 1], rm[rt << 1 | 1]);
}
void build(int l, int r, int rt){
if(l == r){
lm[rt] = L[l], rm[rt] = R[l];
return ;
}
int mid = l + ((r - l) >> 1);
build(l, mid, rt << 1);
build(mid + 1, r, rt << 1 | 1);
update(rt);
}
void qry(int l, int r, int x, int y, int& nx, int& ny, int rt){
if(l == x && r == y){
nx = min(lm[rt], nx); ny = max(rm[rt], ny); return ;
}
int mid = l + ((r - l) >> 1);
if(x <= mid) qry(l, mid, x, min(y, mid), nx, ny, rt << 1);
if(y > mid) qry(mid + 1, r, max(x, mid + 1), y, nx, ny, rt << 1 | 1);
}
}seg;
inline int l_lim(int x){
return lower_bound(pos + 1, pos + x, pos[x] - rad[x]) - pos;
}
inline int r_lim(int x){
return upper_bound(pos + x + 1, pos + n + 1, pos[x] + rad[x]) - pos - 1;
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i){
scanf("%lld%lld", &pos[i], &rad[i]);
}
for(int i = 1; i <= n; ++i){
L[i] = l_lim(i);
R[i] = r_lim(i);
}
seg.build(1, n, 1);
ans = 0;
int x, y, nx, ny;
for(int i = 1; i <= n; ++i){
x = y = nx = ny = i;
do{
x = nx, y = ny;
nx = inf, ny = -inf; seg.qry(1, n, x, y, nx, ny, 1);
}while((nx ^ x) | (ny ^ y));
ans = (ans + 1ll * i * (y - x + 1) % P) % P;
//这里原来忘乘1ll了爆了long long
}
printf("%lld\n", ans);
return 0;
}
/*
单纯维护两边并更新不可行 可能会有折向引爆
*/
LOJ2255. 「SNOI2017」炸弹 (线段树)的更多相关文章
- loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点
loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...
- loj #2255. 「SNOI2017」炸弹
#2255. 「SNOI2017」炸弹 题目描述 在一条直线上有 NNN 个炸弹,每个炸弹的坐标是 XiX_iXi,爆炸半径是 RiR_iRi,当一个炸弹爆炸时,如果另一个炸弹所在位置 X ...
- LOJ 2312(洛谷 3733) 「HAOI2017」八纵八横——线段树分治+线性基+bitset
题目:https://loj.ac/problem/2312 https://www.luogu.org/problemnew/show/P3733 原本以为要线段树分治+LCT,查了查发现环上的值直 ...
- bzoj5518 & loj3046 「ZJOI2019」语言 线段树合并+树链的并
题目传送门 https://loj.ac/problem/3046 题解 首先问题就是问有多少条路径是给定的几条路径中的一条的一个子段. 先考虑链的做法. 枚举右端点 \(i\),那么求出 \(j\) ...
- LG1198/BZOJ1012 「JSOI2008」最大数 线段树+离线
问题描述 LG1198 BZOJ1012 题解 我们把所有操作离线,设一共有\(n\)个插入操作. 于是提前建立\(n\)个数,全部设为\(-INF\) 接着逐个处理操作即可. \(\mathrm{C ...
- LOJ #2005. 「SDOI2017」相关分析 线段树维护回归直线方程
题目描述 \(Frank\) 对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. \(Frank\) 不仅喜欢观测,还喜欢分析观测到的 ...
- [SNOI2017]炸弹[线段树优化建图]
[SNOI2017]炸弹 线段树优化建图,然后跑一边tarjan把点全部缩起来,炸一次肯定是有连锁反应的所以整个连通块都一样-于是就可以发现有些是只有单向边的不能忘记更新,没了. #include & ...
- loj #2254. 「SNOI2017」一个简单的询问
#2254. 「SNOI2017」一个简单的询问 题目描述 给你一个长度为 NNN 的序列 aia_iai,1≤i≤N1\leq i\leq N1≤i≤N,和 qqq 组询问,每组询问读入 l1 ...
- 「SNOI2017」一个简单的询问
「SNOI2017」一个简单的询问 简单的解法 显然可以差分一下. \[get(l,r,x)\times get(l1,r1,x)=get(1,r,x) \times get(1,r1,x)-get( ...
随机推荐
- 为什么HashMap初始大小为16,为什么加载因子大小为0.75,这两个值的选取有什么特点?
先看HashMap的定义: public class HashMap<K,V>extends AbstractMap<K,V>implements Map<K,V> ...
- GFS浅析
1 . 简介 GFS, Big Table, Map Reduce称为Google的三驾马车,是许多基础服务的基石 GFS于2003年提出,是一个分布式的文件系统,与此前的很多分布式系统的前提假设存在 ...
- C++实现算法常用的STL---整理
algorithm min(a,b)和max(a,b) #include<iostream> #include<algorithm> using namespace std; ...
- 分析一个react项目
目录结构 下面是使用npx create-react-app web-app来创建的一个项目(已经删除了多余的文件) web-app ├── node_modules │ ├── ....... ...
- 【学习总结】GirlsInAI ML-diary day-4:变量/Variable
[学习总结]GirlsInAI ML-diary 总 原博github链接-day4 变量/Variable 变量是计算机编程中一个很基础的概念,在计算机程序中,variables are reser ...
- Hive基础
一.常用语句 二.嵌套语句 以上两句的查询结果相同. 三.关键字查询
- scroll滚动条样式修改
一般我们有两种情况会出现滚动条,一种是overflow,一种是使用scroll. 当我们需要改变这个滚动条样式的时候,我们需要做以下的修改: html: <div id="style- ...
- [转帖]wifi 4G 和 蓝牙的区别
作者:沈万马链接:https://www.zhihu.com/question/64739486/answer/225227838来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- Mybatis 配置resultMap一对多关联映射
resultMap配置: 引用: PO类: 接口: 测试: public class UserMapperTest { private SqlSessionFactory sqlSessionFact ...
- Day3-1 函数
定义: 函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可 特性: 减少重复代码 使程序变的可扩展 使程序变得易维护 语法: def calc(x, y): ...