/*
给定一个无向图,往里面加边,问加第i条边时图中的桥数
首先肯定要求初始状态下的桥,染色缩点
每次给定的边为(u,v), 那么u->lca(u,v)->v路上的所有边都不再是桥
求LCA时可以直接暴力,一个一个点往上找即可,网上好多题解都是用并查集做的。。
*/
#include<bits/stdc++.h>
using namespace std;
#define maxn 200005
struct Edge{int to,nxt,cut;}edge[maxn<<],edge_c[maxn<<];
int head[maxn],tot,head_c[maxn],tot_c,n,m,q; void addedge(int u,int v){
edge[tot].to=v;edge[tot].nxt=head[u];head[u]=tot++;
edge[tot].cut=;
}
void add_c(int u,int v){
edge_c[tot_c].to=v;
edge_c[tot_c].nxt=head_c[u];
head_c[u]=tot_c++;
} int dfn[maxn],low[maxn],ind,c[maxn],dcc;
void tarjan(int u,int in_edge){
dfn[u]=low[u]=++ind;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(!dfn[v]){
tarjan(v,i);
low[u]=min(low[u],low[v]); if(dfn[u]<low[v])
edge[i].cut=edge[i^].cut=;
}
else if(i!=(in_edge^))
low[u]=min(low[u],dfn[v]);
}
}
void dfs1(int u){
c[u]=dcc;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(c[v]||edge[i].cut)continue;
dfs1(v);
}
} int dep[maxn],fa[maxn],flag[maxn];//flag[u]表示u上点的边使割边
void dfs2(int u,int pre,int deep){
dep[u]=deep;fa[u]=pre;flag[u]=;
for(int i=head_c[u];i!=-;i=edge_c[i].nxt){
int v=edge_c[i].to;
if(v==pre)continue;
dfs2(v,u,deep+);
}
}
int lca(int u,int v){
int res=;
if(dep[u]<dep[v])swap(u,v);
while(dep[u]>dep[v]){
if(flag[u])
res++,flag[u]=;
u=fa[u];
}
while(u!=v){
if(flag[u])
res++,flag[u]=;
if(flag[v])
res++,flag[v]=;
u=fa[u];
v=fa[v];
}
return res;
}
void init(){
memset(head,-,sizeof head);
memset(head_c,-,sizeof head_c);
memset(dep,,sizeof dep);
memset(fa,,sizeof fa);
memset(flag,,sizeof flag);
memset(c,,sizeof c);
memset(dfn,,sizeof dfn);
memset(low,,sizeof low);
tot=tot_c=ind=dcc=;
}
int main(){
int tt=;
while(cin>>n>>m,n){
init();
for(int i=;i<=m;i++){
int u,v;
cin>>u>>v;
addedge(u,v);
addedge(v,u);
}
tarjan(,); dcc=;//染色
for(int i=;i<=n;i++)
if(!c[i]){
++dcc;
dfs1(i);
} int ans=;
for(int i=;i<tot;i++){//缩点
int v=edge[i].to,u=edge[i^].to;
if(c[u]==c[v])continue;
add_c(c[u],c[v]);
if(edge[i].cut)ans++;
}
ans/=; printf("Case %d:\n",++tt); dfs2(,,);//求出dep数组
cin>>q;
for(int i=;i<=q;i++){
int u,v;
cin>>u>>v;
ans-=lca(c[u],c[v]);
printf("%d\n",ans);
} /* for(int i=1;i<=n;i++)
cout<<i<<" "<<c[i]<<" "<<dep[c[i]]<<" "<<fa[c[i]]<<endl;
*/
puts("");
}
return ;
}

hdu2460 e-DCC染色缩点+暴力LCA的更多相关文章

  1. H - Rescue the Princess ZOJ - 4097 (tarjan缩点+倍增lca)

    题目链接: H - Rescue the Princess  ZOJ - 4097 学习链接: zoj4097 Rescue the Princess无向图缩点有重边+lca - lhc..._博客园 ...

  2. hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)

    #1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...

  3. hdu 4674 Trip Advisor(缩点+倍增lca)

    花了一天半的时间,才把这道题ac= = 确实是道好题,好久没敲这么长的code了,尤其是最后的判定,各种销魂啊~ 题目中给出的条件最值得关注的就是:每个点最多只能在一个环内->原图是由一个个边连 ...

  4. HDU 3072 Intelligence System(tarjan染色缩点+贪心+最小树形图)

    Intelligence System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  5. POJ 3694 Network (求桥,边双连通分支缩点,lca)

    Network Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5619   Accepted: 1939 Descripti ...

  6. poj2186-Popular Cows【Tarjan】+(染色+缩点)(经典)

    <题目链接> 题目大意: 有N(N<=10000)头牛,每头牛都想成为most poluler的牛,给出M(M<=50000)个关系,如(1,2)代表1欢迎2,关系可以传递,但 ...

  7. BZOJ 4668: 冷战 并查集&&暴力LCA(雾)

    利用并查集按秩合并,保存每个点合并的时间: 求时间时,就一直跳u=fa[u],并记录路径上时间的最大值,代表最后一次合并的时间 #include<cstdio> #include<i ...

  8. hdu4612 卡cin e-DCC缩点

    /* 给定无向图,求加入一条边后最少剩下多少桥 */ #include<bits/stdc++.h> using namespace std; #define maxn 200005 #d ...

  9. LCA(Lowest Common Ancesor)

    LCA(Lowest Common Ancesor) 1.基于二分搜索算法 预处理father[v][k]表示v的2的k次方层祖先,时间复杂度是O(nlogn),每次查询的时间复杂度是O(logn), ...

随机推荐

  1. 堆(heap)与栈(stack)

    编程语言书籍中经常解释: 值类型被创建在栈上,引用类型被创建在堆上.   构造函数,原型之类的算是引用类型吗? 5种基本数据类型有Undefined.Null.Boolean.Number 和 Str ...

  2. eureka 学习

    Eureka is a REST (Representational State Transfer) based service that is primarily used in the AWS c ...

  3. WPF DataGrid 列显示0,-1(作废、删除)状态,1,2(支出、收入)类型,操作人(在其他表中),如何转换格式。

    操作人,左联,Join on letf //容我补充 状态,类型,类似的转换,在xmlns中引入common   xmlns:com="clr-namespace:XXX.Common&qu ...

  4. [sklearn] 官方例程-Imputing missing values before building an estimator 随机填充缺失值

    官方链接:http://scikit-learn.org/dev/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot- ...

  5. CF1096E The Top Scorer

    题目地址:洛谷CF1096E 本场AC数最少 (最难) 的题目 题目大意:给出三个数p , s,r,表示有p人,每个人都有一个非负得分,所有人的得分和为s,Hasan的得分至少为r,求Hasan是第一 ...

  6. C++ 11 snippets , 1

    1->创建7个Thread,跑个非常大的循环.观察CPU void func(string &name) { ;i<0xFFFFFFFF;i++) { //cout << ...

  7. Python3-lamba表达式、zip函数

    lambda表达式 学习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即: # 普通条件语句 == : name = 'wupeiqi' else: name = 'alex' ...

  8. 关于python中的矩阵乘法(array和mat类型)

    关于python中的矩阵乘法,我们一般有两种数据格式可以实现:np.array()类型和np.mat()类型: 对于这两种数据类型均有三种操作方式: (1)乘号 * (2)np.dot() (3)np ...

  9. MIPI协议学习总结(一)【转】

    转自:https://www.cnblogs.com/EaIE099/p/5200341.html 一.MIPI 简介: MIPI(移动行业处理器接口)是Mobile Industry Process ...

  10. 关于 DELPHI DATASNAP 的文章集

    关于 DELPHI  DATASNAP 的文章集: 1.墨者工作室  DataSnap基础 https://wenku.baidu.com/view/78715605cc1755270722088b. ...