/*
找出了一个dp式子
是否能够倍增优化
我推的矩阵不太一样

1 0 0 0 0
0 0 0 0 -1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 2 求得逆矩阵大概就是 1 0 0 0 0
0 2 0 0 1
0 0 1 0 0
0 0 0 1 0
0 -1 0 0 0
*/
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<queue>
#define ll long long
#define M 100010
#define log lllgggi
#define mmp make_pair
using namespace std;
int read()
{
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
const int mod = 1000000007;
char s[M]; void add(int &x, int y)
{
x += y;
x -= x >= mod ? mod : 0;
x += x < 0 ? mod : 0;
}
struct Mx{
int a[10][10];
Mx()
{
memset(a, 0, sizeof(a));
}
}be[9], iv[9], an[M], bn[M]; Mx mul(Mx a, Mx b)
{
Mx c;
for(int i = 0; i <= 9; i++)
{
for(int j = 0; j <= 9; j++)
{
for(int k = 0; k <= 9; k++)
{
add(c.a[i][k], 1ll * a.a[i][j] * b.a[j][k] % mod);
}
}
}
return c;
} int n, a[M], sum, q, f[10], g[10]; int main()
{
scanf("%s", s + 1);
n = strlen(s + 1);
for(int i = 1; i <= n; i++) a[i] = s[i] - 'a';
for(int k = 0; k <= 8; k++)
{
for(int i = 0; i <= 8; i++)
{
if(i == k)
{
be[k].a[9][k] = 1;
be[k].a[k][9] = mod - 1;
iv[k].a[i][i] = 2;
iv[k].a[i][9] = 1;
iv[k].a[9][i] = mod - 1;
}
else
{
be[k].a[i][i] = 1;
iv[k].a[i][i] = 1;
}
}
be[k].a[9][9] = 2;
}
for(int i = 0; i <= 9; i++) an[0].a[i][i] = bn[0].a[i][i] = 1;
for(int i = 1; i <= n; i++) an[i] = mul(an[i - 1], be[a[i]]), bn[i] = mul(iv[a[i]], bn[i - 1]);
q = read(); while(q--)
{
int l = read(), r = read();
memset(f, 0, sizeof(f));
f[9] = 1;
memset(g, 0, sizeof(g));
for(int i = 0; i <= 9; i++)
{
for(int j = 0; j <= 9; j++)
{
add(g[i], 1ll * f[j] * bn[l - 1].a[j][i] % mod);
}
}
memcpy(f, g, sizeof(f));
int ans = 0;
for(int j = 0; j <= 9; j++)
{
add(ans, 1ll * f[j] * an[r].a[j][9] % mod);
}
cout << (ans - 1 + mod) % mod << "\n";
}
return 0;
}

「2017 山东一轮集训 Day6」子序列(矩阵快速幂)的更多相关文章

  1. loj#6074. 「2017 山东一轮集训 Day6」子序列(矩阵乘法 dp)

    题意 题目链接 Sol 设\(f[i][j]\)表示前\(i\)个位置中,以\(j\)为结尾的方案数. 转移的时候判断一下\(j\)是否和当前位置相同 然后发现可以用矩阵优化,可以分别求出前缀积和逆矩 ...

  2. LOJ #6074. 「2017 山东一轮集训 Day6」子序列

    #6074. 「2017 山东一轮集训 Day6」子序列 链接 分析: 首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j. ...

  3. loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数

    题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...

  4. LOJ#6075. 「2017 山东一轮集训 Day6」重建

    题目描述: 给定一个 n个点m 条边的带权无向连通图 ,以及一个大小为k 的关键点集合S .有个人要从点s走到点t,现在可以对所有边加上一个非负整数a,问最大的a,使得加上a后,满足:s到t的最短路长 ...

  5. Loj #6069. 「2017 山东一轮集训 Day4」塔

    Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...

  6. Loj #6073.「2017 山东一轮集训 Day5」距离

    Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...

  7. Loj 6068. 「2017 山东一轮集训 Day4」棋盘

    Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...

  8. 「2017 山东一轮集训 Day5」苹果树

    「2017 山东一轮集训 Day5」苹果树 \(n\leq 40\) 折半搜索+矩阵树定理. 没有想到折半搜索. 首先我们先枚举\(k\)个好点,我们让它们一定没有用的.要满足这个条件就要使它只能和坏 ...

  9. 【LOJ#6066】「2017 山东一轮集训 Day3」第二题(哈希,二分)

    [LOJ#6066]「2017 山东一轮集训 Day3」第二题(哈希,二分) 题面 LOJ 题解 要哈希是很显然的,那么就考虑哈希什么... 要找一个东西可以表示一棵树,所以我们找到了括号序列. 那么 ...

随机推荐

  1. 将react升级到15之后的坑

    问题来源: 运用ant-design 的metion组件必须要使用react 15.x以上的版本,而目前所用的版本是 react 0.14.x版本,所以就不得不对react进行升级   出现的问题: ...

  2. 手动制作openstack windows镜像

    https://docs.openstack.org/image-guide/windows-image.html 这里以 windows 2008为例: 准备工作: 1准备好windows 2008 ...

  3. re正则匹配使用

    print(result.span()) #输入字符串的范围 如果在匹配语句中有括号,group(1)就是提取第一个括号的内容,以此类推. 扩展思考:如果要从文本中匹配出目标字符串可以使用括号加gro ...

  4. Linux下Redis开机自启(Centos6)

    1.设置redis.conf中daemonize为yes,确保守护进程开启. 查找redis配置文件redis.conf [root@localhost /]# find / -name redis. ...

  5. 2、Sql-oracle创建新用户

    1.首先我们可以用scott用户以sysdba的身份登录oracle. conn scott/tiger as sysdba 2.然后我就可以来创建用户了. create user zs identi ...

  6. pyhanlp 文本聚类详细介绍

    文本聚类 文本聚类简单点的来说就是将文本视作一个样本,在其上面进行聚类操作.但是与我们机器学习中常用的聚类操作不同之处在于. 我们的聚类对象不是直接的文本本身,而是文本提取出来的特征.因此如何提取特征 ...

  7. HanLP 关键词提取算法分析详解

    HanLP 关键词提取算法分析详解 l 参考论文:<TextRank: Bringing Order into Texts> l TextRank算法提取关键词的Java实现 l Text ...

  8. Linux下Python与C++混合编程

    最近在做一个CUDA的项目,记录下学习心得. 系统 Linux --generic #-Ubuntu x86_64 GNU/Linux C++调用Python Python模块代码: #!/usr/b ...

  9. Oracle和SQL语句的优化策略(基础篇)

    转载自: http://blog.csdn.net/houpengfei111/article/details/9245337 http://blog.csdn.net/uniqed/article/ ...

  10. 使用shell脚本批处理控制大数据环境服务启动停止

    三台集群机器: master   192.168.168.200 slave1     192.168.168.201 slave2     192.168.168.202 1.start-maste ...