「2017 山东一轮集训 Day6」子序列(矩阵快速幂)
/*
找出了一个dp式子
是否能够倍增优化
我推的矩阵不太一样
是
1 0 0 0 0
0 0 0 0 -1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 2
求得逆矩阵大概就是
1 0 0 0 0
0 2 0 0 1
0 0 1 0 0
0 0 0 1 0
0 -1 0 0 0
*/
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<queue>
#define ll long long
#define M 100010
#define log lllgggi
#define mmp make_pair
using namespace std;
int read()
{
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
const int mod = 1000000007;
char s[M];
void add(int &x, int y)
{
x += y;
x -= x >= mod ? mod : 0;
x += x < 0 ? mod : 0;
}
struct Mx{
int a[10][10];
Mx()
{
memset(a, 0, sizeof(a));
}
}be[9], iv[9], an[M], bn[M];
Mx mul(Mx a, Mx b)
{
Mx c;
for(int i = 0; i <= 9; i++)
{
for(int j = 0; j <= 9; j++)
{
for(int k = 0; k <= 9; k++)
{
add(c.a[i][k], 1ll * a.a[i][j] * b.a[j][k] % mod);
}
}
}
return c;
}
int n, a[M], sum, q, f[10], g[10];
int main()
{
scanf("%s", s + 1);
n = strlen(s + 1);
for(int i = 1; i <= n; i++) a[i] = s[i] - 'a';
for(int k = 0; k <= 8; k++)
{
for(int i = 0; i <= 8; i++)
{
if(i == k)
{
be[k].a[9][k] = 1;
be[k].a[k][9] = mod - 1;
iv[k].a[i][i] = 2;
iv[k].a[i][9] = 1;
iv[k].a[9][i] = mod - 1;
}
else
{
be[k].a[i][i] = 1;
iv[k].a[i][i] = 1;
}
}
be[k].a[9][9] = 2;
}
for(int i = 0; i <= 9; i++) an[0].a[i][i] = bn[0].a[i][i] = 1;
for(int i = 1; i <= n; i++) an[i] = mul(an[i - 1], be[a[i]]), bn[i] = mul(iv[a[i]], bn[i - 1]);
q = read();
while(q--)
{
int l = read(), r = read();
memset(f, 0, sizeof(f));
f[9] = 1;
memset(g, 0, sizeof(g));
for(int i = 0; i <= 9; i++)
{
for(int j = 0; j <= 9; j++)
{
add(g[i], 1ll * f[j] * bn[l - 1].a[j][i] % mod);
}
}
memcpy(f, g, sizeof(f));
int ans = 0;
for(int j = 0; j <= 9; j++)
{
add(ans, 1ll * f[j] * an[r].a[j][9] % mod);
}
cout << (ans - 1 + mod) % mod << "\n";
}
return 0;
}
「2017 山东一轮集训 Day6」子序列(矩阵快速幂)的更多相关文章
- loj#6074. 「2017 山东一轮集训 Day6」子序列(矩阵乘法 dp)
题意 题目链接 Sol 设\(f[i][j]\)表示前\(i\)个位置中,以\(j\)为结尾的方案数. 转移的时候判断一下\(j\)是否和当前位置相同 然后发现可以用矩阵优化,可以分别求出前缀积和逆矩 ...
- LOJ #6074. 「2017 山东一轮集训 Day6」子序列
#6074. 「2017 山东一轮集训 Day6」子序列 链接 分析: 首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j. ...
- loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数
题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...
- LOJ#6075. 「2017 山东一轮集训 Day6」重建
题目描述: 给定一个 n个点m 条边的带权无向连通图 ,以及一个大小为k 的关键点集合S .有个人要从点s走到点t,现在可以对所有边加上一个非负整数a,问最大的a,使得加上a后,满足:s到t的最短路长 ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
- Loj 6068. 「2017 山东一轮集训 Day4」棋盘
Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...
- 「2017 山东一轮集训 Day5」苹果树
「2017 山东一轮集训 Day5」苹果树 \(n\leq 40\) 折半搜索+矩阵树定理. 没有想到折半搜索. 首先我们先枚举\(k\)个好点,我们让它们一定没有用的.要满足这个条件就要使它只能和坏 ...
- 【LOJ#6066】「2017 山东一轮集训 Day3」第二题(哈希,二分)
[LOJ#6066]「2017 山东一轮集训 Day3」第二题(哈希,二分) 题面 LOJ 题解 要哈希是很显然的,那么就考虑哈希什么... 要找一个东西可以表示一棵树,所以我们找到了括号序列. 那么 ...
随机推荐
- optimization.splitChunks 中,chunks 的3个值:all、async、initial 的含义
chunks 参数值 含义 all 把动态和非动态模块同时进行优化打包:所有模块都扔到 vendors.bundle.js 里面. initial 把非动态模块打包进 vendor,动态模块优化打包 ...
- splitChunks. cacheGroups 里面的 maxInitialRequests 含义
entry文件请求的chunks不应该超过此值(请求过多,耗时) 出处:https://ymbo.github.io/2018/05/21/webpack%E9%85%8D%E7%BD%AE%E4%B ...
- linux centos6 yum 安装lamp
centos 6.5 1.yum安装和源代码编译在使用的时候没啥区别,但是安装的过程就大相径庭了,yum只需要3个命令就可以完成,源代码需要13个包,还得加压编译,步骤很麻烦,而且当做有时候会出错,源 ...
- 高级java必会系列一:常用线程池和调度类
众所周知,开启线程2种方法:第一是实现Runable接口,第二继承Thread类.(当然内部类也算...)常用的,这里就不再赘述. 一.线程池 1.newCachedThreadPool (1)缓存型 ...
- Abp问题解决集合1
ABP学习经验 1. 视图中(控制器中直接使用仓储)会遇到使用实体外键,出现数据库连接关闭的错误 初学者经常会犯这样一个错误,没错说的就是我自己,这个问题折腾了我很长世间.还是没有细看文档,对ab ...
- chgrp命令详解
Linux chgrp命令 Linux chgrp命令用于变更文件或目录的所属群组. 在UNIX系统家族里,文件或目录权限的掌控以拥有者及所属群组来管理.您可以使用chgrp指令去变更文件与目录的所属 ...
- [转]Scrapy简单入门及实例讲解
Scrapy简单入门及实例讲解 中文文档: http://scrapy-chs.readthedocs.io/zh_CN/0.24/ Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用 ...
- linux环境下python的pdb调试方法
一些常用指令: h(elp) [comman] #打印可用指令及帮助信息 r(eturn) #运行代码直到下一个断点或当前函数返回 b(reak) [[filename:]lineno | fun ...
- TextBox限制输入字母、数字、退格键
公共方法如下: /// <summary> /// 正则表达式验证只能输入数字或字母 /// </summary> /// <param name="pendi ...
- Windows Azure Virtual Network (12) 虚拟网络之间点对点连接VNet Peering
<Windows Azure Platform 系列文章目录> 在有些时候,我们需要通过VNet Peering,把两个虚拟网络通过内网互通互联.比如: 1.在订阅A里的Virtual N ...