题目描述

给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq I\) ,使得在实直线 \(L\) 的任何一点 \(x\) ,\(S\) 中包含点 \(x\) 的开区间个数不超过 \(k\) 。且 \(\sum\limits_{z \in S} | z |\) 达到最大。这样的集合 \(S\) 称为开区间集合 \(I\) 的最长 \(k\) 可重区间集。\(\sum\limits_{z \in S} | z |\) 称为最长 \(k\) 可重区间集的长度。

对于给定的开区间集合 \(I\) 和正整数 \(k\) ,计算开区间集合 \(I\) 的最长 \(k\) 可重区间集的长度。

输入格式

文件的第 \(1\) 行有 \(2\) 个正整数 \(n\) 和 \(k\) ,分别表示开区间的个数和开区间的可重迭数。

接下来的 \(n\) 行,每行有 \(2\) 个整数 \(l_i\) 和 \(r_i\) ,表示开区间的左右端点坐标,注意可能有 \(l_i > r_i\) ,此时请将其交换

输出格式

输出最长 \(k\) 可重区间集的长度。

样例

样例输入

4 2
1 7
6 8
7 10
9 13

样例输出

15

数据范围与提示

\(1 \leq n \leq 500, 1 \leq k \leq 3\)

题解

先离散化

然后每个点向后面一个点连容量为 \(inf\) ,费用为 \(0\) 的边

对于一个区间 \(l,r\) ,从 \(l\) 连向 \(r\) ,容量为 \(1\) ,费用为其长度的相反数,代表一个区间只能选一次,选一次的贡献为它的长度

这样建模跑费用流就可以使答案最大

但是还有每个点只能被覆盖 \(k\) 的限制

那么源点向 \(1\) 号点连容量为 \(k\) ,费用为 \(0\) 的边

\(n\) 号点向汇点连容量为 \(k\) ,费用为 \(0\) 的边

在一次增广中,每个点都只会被经过一次

那么最大流一定为 \(k\) ,即 \(k\) 次增广,所以每个点只会被经过 \(k\) 次,满足题目限制

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000+10,MAXM=(MAXN<<1),inf=0x3f3f3f3f;
int n,k,e=1,beg[MAXN],cur[MAXN],L[MAXN],R[MAXN],r,level[MAXN],p[MAXN],vis[MAXN],clk,s,t,nex[MAXM<<1],to[MAXM<<1],cap[MAXM<<1],was[MAXM<<1],val[MAXN];
ll answas;
std::queue<int> q;
std::vector<int> V;
std::map<int,int> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z,int w)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
was[e]=w;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
was[e]=-w;
}
inline void discretization()
{
for(register int i=1;i<=n;++i)V.push_back(L[i]),V.push_back(R[i]);
std::sort(V.begin(),V.end());
V.erase(std::unique(V.begin(),V.end()),V.end());
for(register int i=0,lt=V.size();i<lt;++i)M[V[i]]=i+1;
for(register int i=1;i<=n;++i)L[i]=M[L[i]],R[i]=M[R[i]],chkmax(r,R[i]);
}
inline bool bfs()
{
memset(level,inf,sizeof(level));
level[s]=0;
p[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&level[to[i]]>level[x]+was[i])
{
level[to[i]]=level[x]+was[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
return level[t]!=inf;
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+was[i])
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
answas+=1ll*was[i]*f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline void MCMF()
{
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),dfs(s,inf);
}
int main()
{
read(n);read(k);
for(register int i=1;i<=n;++i)
{
read(L[i]);read(R[i]);
if(L[i]>R[i])std::swap(L[i],R[i]);
val[i]=R[i]-L[i];
}
discretization();
s=r+1,t=s+1;
insert(s,1,k,0);insert(r,t,k,0);
for(register int i=1;i<r;++i)insert(i,i+1,inf,0);
for(register int i=1;i<=n;++i)insert(L[i],R[i],1,-val[i]);
MCMF();
write(-answas,'\n');
return 0;
}

【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集的更多相关文章

  1. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  2. LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   ...

  3. 「网络流24题」「LuoguP3358」 最长k可重区间集问题(费用流

    题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...

  4. 「网络流 24 题」最长 k 可重区间集

    给定区间集合$I$和正整数$k$, 计算$I$的最长$k$可重区间集的长度. 区间离散化到$[1,2n]$, $S$与$1$连边$(k,0)$, $i$与$i+1$连边$(k,0)$, $2n$与$T ...

  5. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  6. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  7. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  8. 【网络流24题】最长k可重区间集(费用流)

    [网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...

  9. COGS743. [网络流24题] 最长k可重区间集

    743. [网络流24题] 最长k可重区间集 ★★★   输入文件:interv.in   输出文件:interv.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: «编 ...

随机推荐

  1. 网络运营商名称显示&amp;SIM名称显示

    一 网络名称显示这部分比較复杂.Spec对这也有明白的规定,依据其优先级由高往低介绍(其优先级參考TS 22.101), 1.       Enhanced Operator Name String. ...

  2. 安装Docker的三种方式

    本人在安装docker时之前一直采用的是系统自带的docker软件包安装,导致下载的docker不是最新版本,因此会有很多docker命令无法使用,例如network等等,现将安装docker的方式总 ...

  3. IDEA创建Scala项目

    一.安装插件 见Scala入门篇 二.新建项目 选择new project,其中SBT相当于精简版的maven,其他的待补充.这里选择IDEA 填写信息,选择Scala SDK 在src目录下新建Sc ...

  4. go语言之行--接口(interface)、反射(reflect)详解

    一.interface简介 interface(接口)是golang最重要的特性之一,Interface类型可以定义一组方法,但是这些不需要实现.并且interface不能包含任何变量. 简单的说: ...

  5. 20155306 白皎 《网络攻防》 EXP8 Web基础

    20155306 白皎 <网络攻防> EXP8 Web基础 一.问题回答 - 什么是表单 表单:一般用来收集用户的信息和反馈意见 表单包括两个部分:一部分是HTML源代码用于描述表单(例如 ...

  6. 20155311《网络对抗》Web基础

    20155311<网络对抗>Web基础 实验过程 Web前端:HTML 使用netstat -aptn查看80端口是否被占用(上次实验设置为Apache使用80端口),如果被占用了就kil ...

  7. InkCanvas控件的使用

    原文:InkCanvas控件的使用 ==>InkCanvas设置位置跟Canvas一样.通过InkCanvas.Top之类的设置,需要设置的属性有EditingMode,来自于InkCanvas ...

  8. 汇编 EAX,EBX,ECX,EDX,寄存器

    知识点: 寄存器EAX 寄存器AX 寄存器AH 寄存器AL 一.EAX与AX,AH,AL关系图 一格表示一字节 #include <Windows.h> int _tmain(int ar ...

  9. mfc 类模板

    类模板 创建类模板 添加成员变量 添加成员函数 定义类模板对象 一.创建类模板 template <class T,class T2> template <class T> 二 ...

  10. RHEL6 最小化系统 编译安装部署zabbix (mysql)

    RHEL6 最小化系统 编译安装部署zabbix (mysql)官方说明详细见:https://www.zabbix.com/documentation/4.0/manual/installation ...