Stein算法求最大公约数
首先引进一个符号:gcd是greatest common divisor(最大公约数)的缩写,gcd( x,y ) 表示x和y的最大公约数。然后有一个事实需要了解:一个奇数的所有约数都是奇数。这个很容易,下面我们要用到。
来研究一下最大公约数的性质,我们发现有 gcd( k*x,k*y ) = k*gcd( x,y ) 这么一个非常好的性质(证明我就省去了)。说他好是因为他非常符合我们化小的思想。我们试取 k=2 ,则有 gcd( 2x,2y ) = 2 * gcd( x,y )。这使我们很快联想到将两个偶数化小的方法。那么一奇一个偶以及两个奇数的情况我们如何化小呢?
先来看看一奇一偶的情况: 设有2x和y两个数,其中y为奇数。因为y的所有约数都是奇数,所以 a = gcd( 2x,y ) 是奇数。根据2x是个偶数不难联想到,a应该是x的约数。我们来证明一下:(2x)%a=0,设2x=n*a,因为a是奇数,2x是偶数,则必有n是偶数。又因为 x=(n/2)*a,所以 x%a=0,即a是x的约数。因为a也是y的约数,所以a是x和y的公约数,有 gcd( 2x,y ) <= gcd( x,y )。因为gcd( x,y )明显是2x和y的公约数,又有gcd( x,y ) <= gcd( 2x,y ),所以 gcd( 2x,y ) = gcd( x,y )。至此,我们得出了一奇一偶时化小的方法。
再来看看两个奇数的情况:设有两个奇数x和y,似乎x和y直接向小转化没有什么太好的办法,我们可以绕个道,把x和y向偶数靠拢去化小。不妨设x>y,我们注意到x+y和x-y是两个偶数,则有 gcd( x+y,x-y ) = 2 * gcd( (x+y)/2,(x-y)/2 ),那么 gcd( x,y ) 与 gcd( x+y,x-y ) 以及 gcd( (x+y)/2,(x-y)/2 ) 之间是不是有某种联系呢?为了方便我设 m=(x+y)/2 ,n=(x-y)/2 ,容易发现 m+n=x ,m-n=y 。设 a = gcd( m,n ),则 m%a=0,n%a=0 ,所以 (m+n)%a=0,(m-n)%a=0 ,即 x%a=0 ,y%a=0 ,所以a是x和y的公约数,有 gcd( m,n )<= gcd(x,y)。再设 b = gcd( x,y )肯定为奇数,则 x%b=0,y%b=0 ,所以 (x+y)%b=0 ,(x-y)%b=0 ,又因为x+y和x-y都是偶数,跟前面一奇一偶时证明a是x的约数的方法相同,有 ((x+y)/2)%b=0,((x-y)/2)%b=0 ,即 m%b=0 ,n%b=0 ,所以b是m和n的公约数,有 gcd( x,y ) <= gcd( m,n )。所以 gcd( x,y ) = gcd( m,n ) = gcd( (x+y)/2,(x-y)/2 )。
我们来整理一下,对两个正整数 x>y :
1.均为偶数 gcd( x,y ) =2gcd( x/2,y/2 );
2.均为奇数 gcd( x,y ) = gcd( (x+y)/2,(x-y)/2 );
2.x奇y偶 gcd( x,y ) = gcd( x,y/2 );
3.x偶y奇 gcd( x,y ) = gcd( x/2,y ) 或 gcd( x,y )=gcd( y,x/2 );
现在我们已经有了递归式,还需要再找出一个退化情况。注意到 gcd( x,x ) = x ,我们就用这个。
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
int Stein(int x,int y)
{
int ans = 0,tmp;
if(x<y){
swap(x,y);
}
if(y==0) return x;//0能被任何非0数整除
while(x!=y)
{
if(x&1){//x&0x1(0x表示16#)
if(y&1){//x,y同为奇数时
y = (x-y)>>1;
x -= y;
}else{//x为奇数,y为偶数时
y>>=1;
}
}else{
if(y&1){//x为偶数,y为奇数
x>>=1;
if(x<y) swap(x,y);
}else{//x,y都为偶数
x>>=1;
y>>=1;
ans++;
}
}
}
return x<<ans;
}
int main()
{
//freopen("input.txt","r",stdin);
int x,y;
while(~scanf("%d%d",&x,&y))
{
int ans = Stein(x,y);
printf("%d\n",ans);
}
return 0;
}
Stein算法求最大公约数的更多相关文章
- 浅谈Stein算法求最大公约数(GCD)的原理及简单应用
一.Stein算法过程及其简单证明 1.一般步骤: s1:当两数均为偶数时将其同时除以2至至少一数为奇数为止,记录除掉的所有公因数2的乘积k: s2:如果仍有一数为偶数,连续除以2直至该数为奇数为止: ...
- 使用Euclid算法求最大公约数
参考文章 1.<linux c编程一站式学习>的习题5.3.1 2.百度百科Euclid算法:https://baike.baidu.com/item/Euclid%E7%AE%97%E6 ...
- 最小公约数(欧几里得算法&&stein算法)
求最小公约数,最easy想到的是欧几里得算法,这个算法也是比較easy理解的,效率也是非常不错的. 也叫做辗转相除法. 对随意两个数a.b(a>b).d=gcd(a.b),假设b不为零.那么gc ...
- 求最大公约数(GCD)的两种算法
之前一直只知道欧几里得辗转相除法,今天学习了一下另外一种.在处理大数时更优秀的算法--Stein 特此记载 1.欧几里得(Euclid)算法 又称辗转相除法,依据定理gcd(a,b)=gcd(b,a% ...
- Python 最大公约数的欧几里得算法及Stein算法
greatest common divisor(最大公约数) 1.欧几里得算法 欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数. 其计算原理依赖于下面的定理: 两个整数的最大公约数等 ...
- 【算法基础】欧几里得gcd求最大公约数
package Basic; import java.util.Scanner; public class Gcd { public static void main(String[] args) { ...
- 算法:辗转相除法求最大公约数(C语言实现)
辗转相除法,一种求最大公约数的算法 已知:A / B = C ······ R (A.B.C.R皆是整数) 假设:D是A的余数,D也是B的余数,那么D就是A和B的公约数 D是A和B的约数,则A和B是 ...
- [算法]求满足要求的进制(辗转相除(欧几里得算法),求最大公约数gcd)
题目 3在十进制下满足若各位和能被3整除,则该数能被3整除. 5在十六进制下也满足此规律. 给定数字k,求多少进制(1e18进制范围内)下能满足此规律,找出一个即可,无则输出-1. 题解 写写画画能找 ...
- 算法:欧几里得求最大公约数(python版)
#欧几里得求最大公约数 #!/usr/bin/env python #coding -*- utf:8 -*- #iteration def gcd(a,b): if b==0: return a e ...
随机推荐
- DOM系列基础知识
DOM (Document Object Model) 即文档对象模型, 针对 HTML 和 XML 文档的 API (应用程序接口) .DOM 描绘了一个层次化的节点树,运行开发人员添加.移除和修改 ...
- 网站文章分享到微博,微信、qq空间--举例用织梦
有对应接口的,传递参数过去就行了,注意下面的{..},需要替换为你的内容,看参数名称你应该知道是什么东东 新浪地址接口http://service.weibo.com/share/share.php? ...
- HTML与XHTML的差别(转自)http://jingyan.baidu.com/article/597035521c31ed8fc007400a.html
HTML与XHTML之间的差别,粗略可以分为两大类比较:一个是功能上的差别,另外是书写习惯的差别.关于功能上的差别,主要是XHTML可兼容各大浏览器.手机以及PDA,并且浏览器也能快速正确地编译网页. ...
- 同一个线程多次调用start()会出现的问题
结果: 线程首先会运行一次,然后抛出java.lang.IllegalThreadStateException异常. 根据控制台的异常信息,定位到Thread.java的第708行,也就start() ...
- 自己动手开启QUIC(转载)
源:https://www.bennythink.com/quic.html#title-0 今天在推上偶然发现 Google 在自己的服务器上启用了 QUIC,QUIC 这东西嘛(发音同 quick ...
- MyBatis Generator中文文档
MyBatis Generator中文文档 MyBatis Generator中文文档地址: http://mbg.cndocs.tk/ 该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看 ...
- 08. pt-find
vim pt-find.cnf host=192.168.100.101port=3306user=adminpassword=admin pt-find --config pt-find.cnf d ...
- HDU 5988.Coding Contest 最小费用最大流
Coding Contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- HDU 4455.Substrings
Substrings Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- Creating Your Own PHP Helper Functions In Laravel
By Hamza Ali LAST UPDATED AUG 26, 2018 12,669 104 Laravel provides us with many built-in helper fun ...