问题

图的m-着色判定问题

给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色?

图的m-着色优化问题

若一个图最少需要m种颜色才能使图中任意相邻的2个顶点着不同颜色,则称这个数m为该图的色数。求一个图的最小色数m的问题称为m-着色优化问题。

分析

解的长度是固定的,n。若x为本问题的一个解,则x[i]表示第i个节点的涂色编号。

可以将m种颜色看作每个节点的状态空间。每到一个节点,遍历所有颜色,剪枝,回溯。

不难看出,可以套用回溯法子集树模板。

代码


'''图的m着色问题''' # 用邻接表表示图
n = 5 # 节点数
a,b,c,d,e = range(n) # 节点名称
graph = [
{b,c,d},
{a,c,d,e},
{a,b,d},
{a,b,c,e},
{b,d}
] m = 4 # m种颜色 x = [0]*n # 一个解(n元数组,长度固定)注意:解x的下标就是a,b,c,d,e!!!
X = [] # 一组解 # 冲突检测
def conflict(k):
global n,graph,x # 找出第k个节点前面已经涂色的邻接节点
nodes = [node for node in range(k) if node in graph[k]]
if x[k] in [x[node] for node in nodes]: # 已经有相邻节点涂了这种颜色
return True return False # 无冲突 # 图的m着色(全部解)
def dfs(k): # 到达(解x的)第k个节点
global n,m,graph,x,X if k == n: # 解的长度超出
print(x)
#X.append(x[:])
else:
for color in range(m): # 遍历节点k的可涂颜色编号(状态空间),全都一样
x[k] = color
if not conflict(k): # 剪枝
dfs(k+1) # 测试
dfs(a) # 从节点a开始

效果图

python 回溯法 子集树模板 系列 —— 10、m着色问题的更多相关文章

  1. python 回溯法 子集树模板 系列 —— 17、找零问题

    问题 有面额10元.5元.2元.1元的硬币,数量分别为3个.5个.7个.12个.现在需要给顾客找零16元,要求硬币的个数最少,应该如何找零?或者指出该问题无解. 分析 元素--状态空间分析大法:四种面 ...

  2. python 回溯法 子集树模板 系列 —— 18、马踏棋盘

    问题 将马放到国际象棋的8*8棋盘board上的某个方格中,马按走棋规则进行移动,走遍棋盘上的64个方格,要求每个方格进入且只进入一次,找出一种可行的方案. 分析 说明:这个图是5*5的棋盘. 图片来 ...

  3. python 回溯法 子集树模板 系列 —— 16、爬楼梯

    问题 某楼梯有n层台阶,每步只能走1级台阶,或2级台阶.从下向上爬楼梯,有多少种爬法? 分析 这个问题之前用分治法解决过.但是,这里我要用回溯法子集树模板解决它. 祭出元素-状态空间分析大法:每一步是 ...

  4. python 回溯法 子集树模板 系列 —— 15、总结

    作者:hhh5460 时间:2017年6月3日 用回溯法子集树模板解决了这么多问题,这里总结一下使用回溯法子集树模板的步骤: 1.确定元素及其状态空间(精髓) 对每一个元素,遍历它的状态空间,其它的事 ...

  5. python 回溯法 子集树模板 系列 —— 14、最长公共子序列(LCS)

    问题 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入示例 belong cnblogs 输出示例 blog ...

  6. python 回溯法 子集树模板 系列 —— 9、旅行商问题(TSP)

    问题 旅行商问题(Traveling Salesman Problem,TSP)是旅行商要到若干个城市旅行,各城市之间的费用是已知的,为了节省费用,旅行商决定从所在城市出发,到每个城市旅行一次后返回初 ...

  7. python 回溯法 子集树模板 系列 —— 8、图的遍历

    问题 一个图: A --> B A --> C B --> C B --> D B --> E C --> A C --> D D --> C E -- ...

  8. python 回溯法 子集树模板 系列 —— 3、0-1背包问题

    问题 给定N个物品和一个背包.物品i的重量是Wi,其价值位Vi ,背包的容量为C.问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大? 分析 显然,放入背包的物品,是N个物品的所有子集的其 ...

  9. python 回溯法 子集树模板 系列 —— 13、最佳作业调度问题

    问题 给定 n 个作业,每一个作业都有两项子任务需要分别在两台机器上完成.每一个作业必须先由机器1 处理,然后由机器2处理. 试设计一个算法找出完成这n个任务的最佳调度,使其机器2完成各作业时间之和达 ...

随机推荐

  1. 机器学习实战(Machine Learning in Action)学习笔记————03.决策树原理、源码解析及测试

    机器学习实战(Machine Learning in Action)学习笔记————03.决策树原理.源码解析及测试 关键字:决策树.python.源码解析.测试作者:米仓山下时间:2018-10-2 ...

  2. Python数据类型之list和tuple

    list是一种有序的集合,可以随时添加和删除其中的元素. 用len()函数可以获得list元素的个数. 用索引来访问list中每一个位置的元素,索引是从0开始的.如果要取最后一个元素,除了计算索引位置 ...

  3. eclipse中svn插件的工程不能与svn资源库同步的解决方法

    eclipse中svn插件的工程不能与svn资源库同步的解决办法 最近几天自己的工程与资源库同步总是出现问题,重启机器后发现资源库丢失了,无法进行同步. 解决办法如下: 1.右键工程---->选 ...

  4. ORACLE-SQL微妙之处

    本文总结一下平时经常使用的SQL语句以及一些ORACLE函数的微妙之处.欢迎大家多多补充平时最常用的SQL语句,供大家学习参考. SQL> select * from temp2; NAME S ...

  5. MySQL案例08:MySQL Scheduler Events带来的风险

    定时任务是我们开发.运维人员经常用到的,比如cron,job,schedule,events scheduler等都是为了方便我们重复执行某项工作而无需人工参与而设计,这里我要说的是MySQL数据库本 ...

  6. [cb]NGUI事件及复杂UI管理

    事件管理 看了有些文章关于NGUI的事件管理,许多人的做法的是封装一个事件处理层,避免在每个UI控件上都绑定事件处理脚本.本文说说我们项目中的UI事件管理吧. UIEventListener 我们项目 ...

  7. linux date 简单介绍

    用法:date [选项]... [+格式] 或:date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]] 以给定的格式显示当前时间,或是设置系统日期. - ...

  8. linux下取IP(正则)

    linux下取IP(正则) 常见方法: ifconfig eth0|grep "inet addr"|awk -F ":" '{print $2}'|awk ' ...

  9. 隐藏linux软件及内核版本

    在登陆linux主机本地(非xshell或crt)前,会显示系统的版本和内核: 那么我们如何隐藏呢?如下: 1.清空版本及内核信息: [root@bqh-01 ~]# cat /etc/issue C ...

  10. 3.1Python的判断选择语句

    返回总目录 目录: 1.if单分支语句 2.if else 双分支语句 3.if elif ...else多分支语句 4.if 嵌套语句 判断语句总览: (一)if单分支语句: 语法: if 条件: ...