Spark技术内幕: Shuffle详解(一)
通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群;Master通过借助ZK,可以简单的实现HA;而应用方通过SparkContext这个与集群的交互接口,在创建SparkContext时就完成了Application的注册,Master为其分配Executor;在应用方创建了RDD并且在这个RDD上进行了很多的Transformation后,触发action,通过DAGScheduler将DAG划分为不同的Stage后,将Stage转换为TaskSet交给TaskSchedulerImpl;TaskSchedulerImpl通过SparkDeploySchedulerBackend的reviveOffers,最终向ExecutorBackend发送LaunchTask的消息;ExecutorBackend接收到消息后,启动Task,开始在集群中启动计算。
接下来,会介绍一些更详细的细节实现。
Shuffle,无疑是性能调优的一个重点,本文将从源码实现的角度,深入解析Spark Shuffle的实现细节。
每个Stage的上边界,要不是需要从外部存储读取数据,要么需要读取上一个Stage的输出;而下边界,要么是需要写入本地文件系统,以供child Stage读取,要么是ResultTask,需要输出结果了。
首先从org.apache.spark.rdd.ShuffledRDD开始, 因为ShuffledRDD是一个Stage的开始,它需要获取上一个Stage的输出结果,然后进行接下来的运算。那么这个数据获取是如何实现的?顺着ShuffledRDD的实现,我们可以理清这条线。首先可以看一下compute是如何实现的。
override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = {
val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]]
SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)
.read()
.asInstanceOf[Iterator[(K, C)]]
}
它需要从ShuffleManager获取shuffleReader,然后读取数据进行计算。看一下shuffleManager:
// Let the user specify short names for shuffle managers
val shortShuffleMgrNames = Map(
"hash" -> "org.apache.spark.shuffle.hash.HashShuffleManager",
"sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager")
val shuffleMgrName = conf.get("spark.shuffle.manager", "hash")
val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName)
val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)
ShuffleManager分为hash和sort,hash是默认的,即Shuffle时不排序。熟悉MapReduce的同学都知道,MapReduce是无论如何都要排序的,即到Reduce端的都是已经排序好的,当然这么做也是为了可以处理海量的数据。在Spark1.1之前,只支持hash based的Shuffle,sort based Shuffle是1.1新加入的实验功能。
hash顾名思义,在Reduce时的数据需要求有序,因此可以在Reduce获得了数据后,立即进行处理;而不需要等待所有的数据都得到后再处理。这个接下来会通过源码进行解释。而sort,意味着排序,实际上对于sortByKey这种转换可能sort是更有意义的。
ShuffledRDD是通过org.apache.spark.shuffle.hash.HashShuffleReader获取上一个Stage的结果。而HashShuffleReader通过org.apache.spark.shuffle.hash.BlockStoreShuffleFetcher$#fetch来获取结果。而fetch通过调用org.apache.spark.storage.BlockManager#getMultiple来转发请求:
def getMultiple(
blocksByAddress: Seq[(BlockManagerId, Seq[(BlockId, Long)])],
serializer: Serializer,
readMetrics: ShuffleReadMetrics): BlockFetcherIterator = {
val iter = new BlockFetcherIterator.BasicBlockFetcherIterator(this, blocksByAddress, serializer,
readMetrics)
iter.initialize()
iter
}
而最终的实现在org.apache.spark.storage.BlockFetcherIterator.BasicBlockFetcherIterator#initialize中,
override def initialize() {
// Split local and remote blocks.
// 获得需要远程请求的数据列表,并且将已经在本地的数据的blockid放在localBlocksToFetch中,
// 并且在org.apache.spark.storage.BlockFetcherIterator.BasicBlockFetcherIterator.getLocalBlocks进行本地读取
val remoteRequests = splitLocalRemoteBlocks()
// Add the remote requests into our queue in a random order
fetchRequests ++= Utils.randomize(remoteRequests) // Send out initial requests for blocks, up to our maxBytesInFlight
while (!fetchRequests.isEmpty && //保证占用内存不超过设定的值spark.reducer.maxMbInFlight,默认值是48M
(bytesInFlight == 0 || bytesInFlight + fetchRequests.front.size <= maxBytesInFlight)) {
sendRequest(fetchRequests.dequeue())
} val numFetches = remoteRequests.size - fetchRequests.size
logInfo("Started " + numFetches + " remote fetches in" + Utils.getUsedTimeMs(startTime)) // Get Local Blocks
startTime = System.currentTimeMillis
getLocalBlocks() // 从本地获取
logDebug("Got local blocks in " + Utils.getUsedTimeMs(startTime) + " ms")
}
具体获取如何获取的策略都在org.apache.spark.storage.BlockFetcherIterator.BasicBlockFetcherIterator#splitLocalRemoteBlocks中。这个会在下一篇博文中详解。
Spark技术内幕: Shuffle详解(一)的更多相关文章
- Spark技术内幕: Shuffle详解(三)
前两篇文章写了Shuffle Read的一些实现细节.但是要想彻底理清楚这里边的实现逻辑,还是需要更多篇幅的:本篇开始,将按照Job的执行顺序,来讲解Shuffle.即,结果数据(ShuffleMap ...
- Spark技术内幕: Shuffle详解(二)
本文主要关注ShuffledRDD的Shuffle Read是如何从其他的node上读取数据的. 上文讲到了获取如何获取的策略都在org.apache.spark.storage.BlockFetch ...
- [Spark内核] 第36课:TaskScheduler内幕天机解密:Spark shell案例运行日志详解、TaskScheduler和SchedulerBackend、FIFO与FAIR、Task运行时本地性算法详解等
本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据 ...
- Spark技术内幕:Stage划分及提交源码分析
http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...
- Spark技术内幕: Task向Executor提交的源码解析
在上文<Spark技术内幕:Stage划分及提交源码分析>中,我们分析了Stage的生成和提交.但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑, ...
- Spark技术内幕: Task向Executor提交的源代码解析
在上文<Spark技术内幕:Stage划分及提交源代码分析>中,我们分析了Stage的生成和提交.可是Stage的提交,仅仅是DAGScheduler完毕了对DAG的划分,生成了一个计算拓 ...
- 前端技术之_CSS详解第一天
前端技术之_CSS详解第一天 一html部分 略.... 二.列表 列表有3种 2.1 无序列表 无序列表,用来表示一个列表的语义,并且每个项目和每个项目之间,是不分先后的. ul就是英语unorde ...
- 前端技术之_CSS详解第二天
前端技术之_CSS详解第二天 1.css基础选择器 html负责结构,css负责样式,js负责行为. css写在head标签里面,容器style标签. 先写选择器,然后写大括号,大括号里面是样式. & ...
- Spark技术内幕:Master的故障恢复
Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现 详细阐述了使用ZK实现的Master的HA,那么Master是如何快速故障恢复的呢? 处于 ...
随机推荐
- Java必须了解的“递归”与“IO流”!!!
>>>First: 递归! 1. 定义: 在函数自身内部,调用函数本身的方式,称为递归. 2. 注意: 递归包括递进去.归出来两步. 首先,依次执行[函数调自身语句]上半部分的代码, ...
- SpringMVC 教程 - Controller
原文地址:https://www.codemore.top/cates/Backend/post/2018-04-10/spring-mvc-controller 声明Controller Contr ...
- CSAPP-过程调用,数据存储,缓冲区溢出
程序编译: 1.预处理阶段: 1.文件包含:将#include扩展成文件正文 2.条件编译:根据#if和#ifdef将程序的某部分排除或者包含 3.宏展开:将出现宏引用的地方展开成相应的宏 2.编译阶 ...
- 【LSGDOJ1834 Tree】树链剖分
题目描述 给定一个N个结点的无向树,树中的结点按照1...N编号,树中的边按照1...N − 1编号,每条边都赋予一个权值.你需要编写程序支持以下三种操作: 1. CHANGE i v:将i号边 ...
- 51nod 1686 第k大区间
1686 第K大区间 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 定义一个区间的值为其众数出现的次数.现给出n个数,求将所有区间的值排序后,第K大的值为多少. ...
- hdu2795 线段树 贴广告
Billboard Time Limit: 20000/8000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- day4 liaoxuefeng---模块
一.模块 二.常用内建模块 三.常用第三方模块
- 10分钟 5步 发布以太坊 ERC20 代币
1.安装 METAMASK Brings Ethereum to your browser 一个可以浏览器上进行操作的以太坊钱包,推荐 Chrome. Chrome 插件安装地址: https://c ...
- Mysql优化--慢查询日志
Mysql 系列文章主页 =============== 默认没有开启慢查询日志功能.如果不是调优需要的话,一般不建议开启. 查看是否开启慢查询日志: SHOW VARIABLES LIKE '%sl ...
- C# 获取当前屏幕DPI
1.通过Graphics类获取 Graphics currentGraphics = Graphics.FromHwnd(new WindowInteropHelper(mainWindow).Han ...