通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群;Master通过借助ZK,可以简单的实现HA;而应用方通过SparkContext这个与集群的交互接口,在创建SparkContext时就完成了Application的注册,Master为其分配Executor;在应用方创建了RDD并且在这个RDD上进行了很多的Transformation后,触发action,通过DAGScheduler将DAG划分为不同的Stage后,将Stage转换为TaskSet交给TaskSchedulerImpl;TaskSchedulerImpl通过SparkDeploySchedulerBackend的reviveOffers,最终向ExecutorBackend发送LaunchTask的消息;ExecutorBackend接收到消息后,启动Task,开始在集群中启动计算。

接下来,会介绍一些更详细的细节实现。

Shuffle,无疑是性能调优的一个重点,本文将从源码实现的角度,深入解析Spark Shuffle的实现细节。

每个Stage的上边界,要不是需要从外部存储读取数据,要么需要读取上一个Stage的输出;而下边界,要么是需要写入本地文件系统,以供child Stage读取,要么是ResultTask,需要输出结果了。

首先从org.apache.spark.rdd.ShuffledRDD开始, 因为ShuffledRDD是一个Stage的开始,它需要获取上一个Stage的输出结果,然后进行接下来的运算。那么这个数据获取是如何实现的?顺着ShuffledRDD的实现,我们可以理清这条线。首先可以看一下compute是如何实现的。

  override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = {
val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]]
SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)
.read()
.asInstanceOf[Iterator[(K, C)]]
}

它需要从ShuffleManager获取shuffleReader,然后读取数据进行计算。看一下shuffleManager:

 // Let the user specify short names for shuffle managers
val shortShuffleMgrNames = Map(
"hash" -> "org.apache.spark.shuffle.hash.HashShuffleManager",
"sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager")
val shuffleMgrName = conf.get("spark.shuffle.manager", "hash")
val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName)
val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)

ShuffleManager分为hash和sort,hash是默认的,即Shuffle时不排序。熟悉MapReduce的同学都知道,MapReduce是无论如何都要排序的,即到Reduce端的都是已经排序好的,当然这么做也是为了可以处理海量的数据。在Spark1.1之前,只支持hash based的Shuffle,sort based Shuffle是1.1新加入的实验功能。

hash顾名思义,在Reduce时的数据需要求有序,因此可以在Reduce获得了数据后,立即进行处理;而不需要等待所有的数据都得到后再处理。这个接下来会通过源码进行解释。而sort,意味着排序,实际上对于sortByKey这种转换可能sort是更有意义的。

ShuffledRDD是通过org.apache.spark.shuffle.hash.HashShuffleReader获取上一个Stage的结果。而HashShuffleReader通过org.apache.spark.shuffle.hash.BlockStoreShuffleFetcher$#fetch来获取结果。而fetch通过调用org.apache.spark.storage.BlockManager#getMultiple来转发请求:

  def getMultiple(
blocksByAddress: Seq[(BlockManagerId, Seq[(BlockId, Long)])],
serializer: Serializer,
readMetrics: ShuffleReadMetrics): BlockFetcherIterator = {
val iter = new BlockFetcherIterator.BasicBlockFetcherIterator(this, blocksByAddress, serializer,
readMetrics)
iter.initialize()
iter
}

而最终的实现在org.apache.spark.storage.BlockFetcherIterator.BasicBlockFetcherIterator#initialize中,

  override def initialize() {
// Split local and remote blocks.
// 获得需要远程请求的数据列表,并且将已经在本地的数据的blockid放在localBlocksToFetch中,
// 并且在org.apache.spark.storage.BlockFetcherIterator.BasicBlockFetcherIterator.getLocalBlocks进行本地读取
val remoteRequests = splitLocalRemoteBlocks()
// Add the remote requests into our queue in a random order
fetchRequests ++= Utils.randomize(remoteRequests) // Send out initial requests for blocks, up to our maxBytesInFlight
while (!fetchRequests.isEmpty && //保证占用内存不超过设定的值spark.reducer.maxMbInFlight,默认值是48M
(bytesInFlight == 0 || bytesInFlight + fetchRequests.front.size <= maxBytesInFlight)) {
sendRequest(fetchRequests.dequeue())
} val numFetches = remoteRequests.size - fetchRequests.size
logInfo("Started " + numFetches + " remote fetches in" + Utils.getUsedTimeMs(startTime)) // Get Local Blocks
startTime = System.currentTimeMillis
getLocalBlocks() // 从本地获取
logDebug("Got local blocks in " + Utils.getUsedTimeMs(startTime) + " ms")
}

具体获取如何获取的策略都在org.apache.spark.storage.BlockFetcherIterator.BasicBlockFetcherIterator#splitLocalRemoteBlocks中。这个会在下一篇博文中详解。

Spark技术内幕: Shuffle详解(一)的更多相关文章

  1. Spark技术内幕: Shuffle详解(三)

    前两篇文章写了Shuffle Read的一些实现细节.但是要想彻底理清楚这里边的实现逻辑,还是需要更多篇幅的:本篇开始,将按照Job的执行顺序,来讲解Shuffle.即,结果数据(ShuffleMap ...

  2. Spark技术内幕: Shuffle详解(二)

    本文主要关注ShuffledRDD的Shuffle Read是如何从其他的node上读取数据的. 上文讲到了获取如何获取的策略都在org.apache.spark.storage.BlockFetch ...

  3. [Spark内核] 第36课:TaskScheduler内幕天机解密:Spark shell案例运行日志详解、TaskScheduler和SchedulerBackend、FIFO与FAIR、Task运行时本地性算法详解等

    本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据 ...

  4. Spark技术内幕:Stage划分及提交源码分析

    http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...

  5. Spark技术内幕: Task向Executor提交的源码解析

    在上文<Spark技术内幕:Stage划分及提交源码分析>中,我们分析了Stage的生成和提交.但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑, ...

  6. Spark技术内幕: Task向Executor提交的源代码解析

    在上文<Spark技术内幕:Stage划分及提交源代码分析>中,我们分析了Stage的生成和提交.可是Stage的提交,仅仅是DAGScheduler完毕了对DAG的划分,生成了一个计算拓 ...

  7. 前端技术之_CSS详解第一天

    前端技术之_CSS详解第一天 一html部分 略.... 二.列表 列表有3种 2.1 无序列表 无序列表,用来表示一个列表的语义,并且每个项目和每个项目之间,是不分先后的. ul就是英语unorde ...

  8. 前端技术之_CSS详解第二天

    前端技术之_CSS详解第二天 1.css基础选择器 html负责结构,css负责样式,js负责行为. css写在head标签里面,容器style标签. 先写选择器,然后写大括号,大括号里面是样式. & ...

  9. Spark技术内幕:Master的故障恢复

    Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现  详细阐述了使用ZK实现的Master的HA,那么Master是如何快速故障恢复的呢? 处于 ...

随机推荐

  1. [HAOI 2008]木棍分割

    Description 题库链接 有 \(n\) 根木棍,第 \(i\) 根木棍的长度为 \(L_i\) , \(n\) 根木棍依次连结了一起,总共有 \(n-1\) 个连接处.现在允许你最多砍断 \ ...

  2. ●BZOJ 2442 [Usaco2011 Open]修剪草坪

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2442 题解: 单调队列优化DP 把问题转化为:从序列里选出一些相邻之间间隔不超过K的数,使得 ...

  3. 运行C++程序是出现错误:cannot open Debug/1.exe for writing

    今天,打开VC6.0环境编了个小程序,谁知给我报了“cannot open Debug/1.exe for writing”这样一个错,然后,我就纳闷了,这是什么错丫? 想了半天,后想通,为什么会这样 ...

  4. SSD-Tensorflow: 3 步运行 TensorFlow 单图片多盒目标检测器

    昨天类似的 YOLO: https://www.v2ex.com/t/392671#reply0 下载这个项目 https://github.com/balancap/SSD-Tensorflow 解 ...

  5. JS 判断是否为IP格式

    <html> <head> <title><a href='http://js.zz5u.net'><u>JavaScript</u& ...

  6. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  7. SQL Server 2016 非域Aways On环境搭建

    一.优点 aways on的优点,a. 构建主从数据库,分摊单点数据库压力.b.可以减少数据同步时间,提升用户体验.c.可以实现高可用,自动平滑切换. 二.缺点 及时同步最多只能提交3台,及时同步会导 ...

  8. --save-dev 和 --save的区别

    1. 我们在使用npm install xx --save-dev / --save安装模块或插件的时候,会将他们写入到 package.json 文件,那到底有什么区别呢? --save-dev:会 ...

  9. JavaScript基础知识从浅入深理解(一)

    JavaScript的简介 javascript是一门动态弱类型的解释型编程语言,增强页面动态效果,实现页面与用户之间的实时动态的交互. javascript是由三部分组成:ECMAScript.DO ...

  10. python中的printf:%号拼接字符串和format函数

    在C语言中,我们使用printf("%s","hello")这种形式进行字符串的拼接 在python中,进行这样的拼接有两种实现方式,分别是%号拼接以及使用fo ...