URAL - 1153 Supercomputer 大数开方
题意:给定m,m = n * (n+1) / 2,计算n值。
思路:n = SQRT(m*2)
注意m很大,需要自己实现大数开方。我用的是自己写的大数模板:大数模板
AC代码
#include <cstdio> #include <cmath> #include <algorithm> #include <cstring> #include <utility> #include <string> #include <iostream> #include <map> #include <set> #include <vector> #include <queue> #include <stack> using namespace std; #define eps 1e-10 #define inf 0x3f3f3f3f #define PI pair<int, int> typedef long long LL; const int maxn = 1e4 + 5; struct BigInteger { vector<int>s; //12345--54321 void DealZero() { //处理前导0 for(int i = s.size() - 1; i > 0; --i){ if(s[i] == 0) s.pop_back(); else break; } } BigInteger operator = (long long num) { // 赋值运算符 s.clear(); vector<int>tmp; do{ s.push_back(num % 10); num /= 10; }while(num); return *this; } BigInteger operator = (const string& str) { // 赋值运算符 s.clear(); for(int i = str.size() - 1; i >= 0; --i) s.push_back(str[i] - '0'); this->DealZero(); return *this; } BigInteger operator = (const char *a) { int n = strlen(a); } BigInteger operator + (const BigInteger& b) const { BigInteger c; c.s.clear(); int len1 = s.size(), len2 = b.s.size(); for(int i = 0, g = 0; g > 0 || i < len1 || i < len2; ++i) { int x = g; if(i < len1) x += s[i]; if(i < len2) x += b.s[i]; c.s.push_back(x % 10); g = x / 10; } return c; } //大数减小数 BigInteger operator - (const BigInteger& b) const { BigInteger c; c.s.clear(); int len1 = s.size(), len2 = b.s.size(); for(int i = 0, g = 0; i < len1 || i < len2; ++i) { int x = g; if(i < len1) x += s[i]; g = 0; if(i < len2) x -= b.s[i]; if(x < 0) { g = -1; //借位 x += 10; } c.s.push_back(x); } c.DealZero(); return c; } BigInteger operator * (const BigInteger& b) const { BigInteger c, tmp; c.s.clear(); int len1 = s.size(), len2 = b.s.size(); for(int i = 0; i < len1; ++i) { tmp.s.clear();tmp; int num = i; while(num--) tmp.s.push_back(0); int g = 0; for(int j = 0; j < len2; ++j) { int x = s[i] * b.s[j] + g; tmp.s.push_back(x % 10); g = x / 10; } if(g > 0) tmp.s.push_back(g); c = c + tmp; } c.DealZero(); return c; } //单精度除法 BigInteger operator / (const int b) const { BigInteger c, tmp; c.s.clear(); int len = s.size(); int div = 0; for(int i = len - 1; i >= 0; --i) { div = div * 10 + s[i]; while(div < b && i > 0) { div = div * 10 + s[--i]; } tmp.s.push_back(div / b); div %= b; } for(int i = tmp.s.size() - 1; i >= 0; --i) c.s.push_back(tmp.s[i]); c.DealZero(); return c; } bool operator < (const BigInteger& b) const { int len1 = s.size(), len2 = b.s.size(); if(len1 != len2) return len1 < len2; for(int i = len1 - 1; i >= 0; --i) { if(s[i] != b.s[i]) return s[i] < b.s[i]; } return false; //相等 } bool operator <= (const BigInteger& b) const { return !(b < *this); } string ToStr() { string ans; ans.clear(); for(int i = s.size()-1; i >= 0; --i) ans.push_back(s[i] + '0'); return ans; } //大数开方 /**大数开方用法说明: 字符串必须从第二个位置开始输入,且s[0] = '0' scanf("%s", s+1); */ BigInteger SQRT(char *s) { string p = ""; s[0]='0'; if(strlen(s)%2 == 1) work(p, 2, s+1, 0); else work(p, 2, s, 0); BigInteger c; c.s.clear(); c = p; return c; } //开方准备 //------------------------------------ int l; int work(string &p, int o,char *O,int I){ char c, *D=O ; if(o>0) { for(l=0;D[l];D[l++]-=10) { D[l++]-=120; D[l]-=110; while(!work(p, 0, O, l)) D[l]+=20; p += (char)((D[l]+1032)/20); } } else { c=o+(D[I]+82)%10-(I>l/2)*(D[I-l+I]+72)/10-9; D[I]+=I<0 ? 0 : !(o=work(p, c/10,O,I-1))*((c+999)%10-(D[I]+92)%10); } return o; } //----------------------------------------- }; ostream& operator << (ostream &out, const BigInteger& x) { for(int i = x.s.size() - 1; i >= 0; --i) out << x.s[i]; return out; } istream& operator >> (istream &in, BigInteger& x) { string s; if(!(in >> s)) return in; x = s; return in; } int main() { BigInteger a, tmp; tmp = 2; string str; char s[maxn]; while(cin >> str) { a = str; a = tmp * a; int cur = 1; for(int i = a.s.size()-1; i >= 0; --i) { s[cur++] = a.s[i] + '0'; } cout << a.SQRT(s) << "\n"; } return 0; }
如有不当之处欢迎指出!
URAL - 1153 Supercomputer 大数开方的更多相关文章
- ural 1153. Supercomputer
1153. Supercomputer Time limit: 2.0 secondMemory limit: 64 MB To check the speed of JCN Corporation ...
- Java中利用BigInteger类进行大数开方
在Java中有时会用到大数据,基本数据类型的存储范围已经不能满足要求了,如要对10的1000次方的这样一个数据规模的数进行开方运算,很明显不能直接用Math.sqrt()来进行计算,因为已经溢出了. ...
- ACM-ICPC2018焦作网络赛 Participate in E-sports(大数开方)
Participate in E-sports 11.44% 1000ms 65536K Jessie and Justin want to participate in e-sports. E- ...
- 蓝桥杯T126(xjb&大数开方)
题目链接:http://lx.lanqiao.cn/problem.page?gpid=T126 题意:中文题诶- 思路:显然被翻转了奇数次的硬币为反面朝上,但是本题的数据量很大,所以O(n^2)枚举 ...
- JAVA 大数开方模板
JAVA 大数开方模板 import java.math.BigInteger; import java.math.*; import java.math.BigInteger; import jav ...
- 大数开方 ACM-ICPC 2018 焦作赛区网络预赛 J. Participate in E-sports
Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know ...
- ACM-ICPC 2018 焦作赛区网络预赛 J Participate in E-sports(大数开方)
https://nanti.jisuanke.com/t/31719 题意 让你分别判断n或(n-1)*n/2是否是完全平方数 分析 二分高精度开根裸题呀.经典题:bzoj1213 用java套个板子 ...
- Very simple problem - SGU 111(大数开方)
分析:使用的是构造新数字法进行不断构造,然后逼近每一位数字,然后使用c++徒手敲了240多行代码,竟然过了........................很有成就感. 代码如下: ========== ...
- 大数模板(Java)
大数加法 /* 给出2个大整数A,B,计算A+B的结果. Input 第1行:大数A 第2行:大数B (A,B的长度 <= 10000 需注意:A B有可能为负数) Output 输出A + B ...
随机推荐
- Python输出hello world(各行命令详解)
创建main.py文件并粘贴下面代码 点击右键运行Debug 'main'后,下方的Debug窗口会出现ImportError: No module named 'bottle'这样的提示,提示导入b ...
- Html的<meta>标签使用方法及用例
浏览器支持 所有浏览器都支持 <meta> 标签. 定义和用法 <meta> 元素可提供有关页面的元信息(meta-information),比如针对搜索引擎和更新频度的描述和 ...
- awk空行合并
[root@localhost ~]#cat urfile [DEFAULT] key1=value1 key2=value2 key3=value3 [agent] key1=value1 key2 ...
- iOS简单动画效果:闪烁、移动、旋转、路径、组合
#define kDegreesToRadian(x) (M_PI * (x) / 180.0) #define kRadianToDegrees(radian) (radian*180.0)/(M_ ...
- Flask之基于route装饰器的路由系统(源码阅读解析)
一 路由系统 1. 在flask中配置URL和视图函数的路由时,首先需要在main.py中实例化一个app对象: from flask import Flask, render_template ap ...
- 洛谷 [P1578] WC2002 奶牛浴场
本题是一道用极大化思想求最大子矩阵的经典题目.这个题目很出名,可以在百度搜索王知昆国家队dalao的论文,其中说的非常详细. 先枚举极大子矩形的左边界,然后从左到右依次扫描每一个障碍点,并不断修改可行 ...
- Spring Task定时任务Scheduled
Spring的任务调度,采用注解的形式 Spring中@Scheduled的用法. spring的配置文件如下,先扫描到任务的类,打开spirng任务的标签 <beans xmlns=" ...
- yii2 源码分析Behavior类分析 (四)
Behavior类是所有事件类的基类,它继承自object类 Behavior类的前面注释描述大概意思: * Behavior类是所有事件类的基类 * * 一个行为可以用来增强现有组件的功能,而不需要 ...
- OpenVPN的那些坑
遇到的情形 最近遇到一种情况,当需要同时使用到多个VPN连接时,默认的openVPN连接是不支持的,但是可以通过手动配置虚拟网络适配器进行相关的设置. 具体解决方法 基本思路是:在本地的网络连接中添加 ...
- PHPUnit-附录 A. 断言 (assert)
[http://www.phpunit.cn/manual/5.7/zh_cn/appendixes.assertions.html] 本附录列举可用的各种断言方法. assertArrayHasKe ...