mahout系列之---谱聚类
1.构造亲和矩阵W
2.构造度矩阵D
3.拉普拉斯矩阵L
4.计算L矩阵的第二小特征值(谱)对应的特征向量Fiedler 向量
5.以Fiedler向量作为kmean聚类的初始中心,用kmeans聚类
亲和矩阵 :W_ij=exp(-(d(s_i,s_j)/2o^2)) d(s_i,s_j) = ||s_i,s_j||. o 为事先设定的参数。
度矩阵:D_ii =sum(w_i)
规范相似矩阵:D^(-1/2)*W*D^(1/2) ,即:W(i,j)/(D(i,i))^1/2*(D(j,j))^1/2
计算(D-W)*x=lamd*D*x 的第二小特征值
Mahout 流程:
亲和矩阵格式
i,j,value
AffinityMatrixInputJob 输出格式
i vector
构造度矩阵(亲和矩阵,i行元素求和作为返回向量i列的值)
MatrixDiagonalizeJob
VectorCache 将向量存储在HDFS中
VectorMatrixMultiplicationJob 向量矩阵相乘
求矩阵的特征值:SSVDSolver (分布式SVD),默认是DistributedLanczosSolver(兰索斯分解器)
将U矩阵归一化
UnitVectorizerJob.runJob(data, unitVectors);
UnitVectorizerJob 归一化矩阵
输入矩阵V,输入矩阵U
v_ij = u_ij / sqrt(sum_j(u_ij * u_ij)
归一化后的U矩阵中i行的最大值作为特征向量的i列的值,以该向量作为种子生成初始中心。
Kmeans 聚类,生成最终的簇。
mahout系列之---谱聚类的更多相关文章
- Mahout系列之----kmeans 聚类
Kmeans是最经典的聚类算法之一,它的优美简单.快速高效被广泛使用. Kmeans算法描述 输入:簇的数目k:包含n个对象的数据集D. 输出:k个簇的集合. 方法: 从D中任意选择k个对象作为初始簇 ...
- 谱聚类(Spectral Clustering)详解
谱聚类(Spectral Clustering)详解 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似 ...
- 谱聚类算法(Spectral Clustering)
谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法--将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的 ...
- 用scikit-learn学习谱聚类
在谱聚类(spectral clustering)原理总结中,我们对谱聚类的原理做了总结.这里我们就对scikit-learn中谱聚类的使用做一个总结. 1. scikit-learn谱聚类概述 在s ...
- 谱聚类(spectral clustering)原理总结
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也 ...
- [zz]谱聚类
了凡春秋USTC 谱聚类 http://chunqiu.blog.ustc.edu.cn/?p=505 最近忙着写文章,好久不写博客了.最近看到一个聚类方法--谱聚类,号称现代聚类方法,看到它简洁的公 ...
- 大数据下多流形聚类分析之谱聚类SC
大数据,人人都说大数据:类似于人人都知道黄晓明跟AB结婚一样,那么什么是大数据?对不起,作为一个本科还没毕业的小白实在是无法回答这个问题.我只知道目前研究的是高维,分布在n远远大于2的欧式空间的数据如 ...
- Laplacian matrix 从拉普拉斯矩阵到谱聚类
谱聚类步骤 第一步:数据准备,生成图的邻接矩阵: 第二步:归一化普拉斯矩阵: 第三步:生成最小的k个特征值和对应的特征向量: 第四步:将特征向量kmeans聚类(少量的特征向量):
- 谱聚类Ng算法的Matlab简单实现
请编写一个谱聚类算法,实现"Normalized Spectral Clustering-Algorithm 3 (Ng 算法)" 结果如下 谱聚类算法核心步骤都是相同的: •利用 ...
随机推荐
- JAVA之旅(三十三)——TCP传输,互相(伤害)传输,复制文件,上传图片,多并发上传,多并发登录
JAVA之旅(三十三)--TCP传输,互相(伤害)传输,复制文件,上传图片,多并发上传,多并发登录 我们继续网络编程 一.TCP 说完UDP,我们就来说下我们应该重点掌握的TCP了 TCP传输 Soc ...
- Android水印相机
本篇文章实现的水印相机,类似于qq空间中的水印相机功能,因之前看过一个demo上实现了一个简陋的水印相机功能,觉得挺有意思,就在此基础上进行了修改,优化和完善,并增加了部分功能,使之更接近于qq水印相 ...
- 剑指Offer——动态规划算法
剑指Offer--动态规划算法 什么是动态规划? 和分治法一样,动态规划(dynamic programming)是通过组合子问题而解决整个问题的解. 分治法是将问题划分成一些独立的子问题,递归地求解 ...
- linux service 简单易懂贴
service用于管理Linux操作系统中服务的命令 1.不是在所有linux发行版本中都有.主要是在redhat.fedora.mandriva和centos中. 2. 命令位于/sbin目录下,用 ...
- Java EE 之 过滤器入门学习与总结(1)
使用Filter技术来配合开发会使得开发变得简单起来.简单的一个例子就表现在"乱码问题"上.不使用Filter的话,我们有可能需要为每一个网页设置字符编码集,如request.se ...
- Arquillian Exception:java.lang.NoClassDefFoundError
Issue: When you deploy and run Arquillian testcase, you may encountered java.lang.NoClassDefFoundErr ...
- iOS 图片裁剪与修改
最近做的项目中需要上传头像,发表内容的时候也要涉及到图片上传,我直接用的原图上传,但是由于公司网络差,原图太大,老是加载好久好久,所以需要把原图裁剪或者修改分辨率之后再上传,找了好久,做了很多尝试才解 ...
- 精通CSS+DIV网页样式与布局--初探CSS
CSS英文名Cascading Style Sheet,中文名字叫层叠样式表,是用于控制页面样式并允许将样式信息与网页内容分离的一种标记性语言,DIV+CSS是WEB设计标准,它是一种网页的布局方法. ...
- 《.NET最佳实践》与Ext JS/Touch的团队开发
概述 持续集成 编码规范 测试 小结 概述 有不少开发人员都问过我,Ext JS/Touch是否支持团队开发?对于这个问题,我可以毫不犹豫的回答:支持.原因是在Sencha官网博客中客户示例中,有不少 ...
- Linux IPC实践(11) --System V信号量(1)
信号量API #include <sys/types.h> #include <sys/ipc.h> #include <sys/sem.h> int semget ...