STM32-正弦波可调(50HZ~20KHZ可调、峰峰值0~3.3V可调)
1.原理:
通过定时器每隔一段时间触发一次DAC转换,然后通过DMA发送正玄波码表值给DAC.
- 当需要改变频率HZ时,只需要修改定时器频率即可(最高只能达到20KHz)
- 当需要改变正玄波的正峰峰值/负峰峰值时,只需要修改正玄波码表即可
2.实现
代码如下所示(采用的是定时器2,DAC引脚是PA4)
#define HZ(x) (u16)(72000000/sizeof(Sine12bit)*2/x) //计算Hz
#define DAC_DHR12R1 0x40007408 //外设DAC通道1的基地址
u16 Sine12bit[] = { //正弦波描点
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , };
/*************************************************************
Function : set_Sine12bit
Description : 设置正玄波码表
Input : MAX(正峰峰值) MIN(负峰峰值)
return : none
*************************************************************/
void Set_Sine12bit(float MAX,float MIN)
{
int i;
float jiaodu=;
float MID=(MAX+MIN)/2.0; //中间峰值
if(MAX>3.3) MAX=3.3;
else if(MAX<=MIN) MIN=;
for(i=;i<;i++)
{
jiaodu=i*0.0247369; //当i =127时,表示为180度,由于sin()是弧度制,所以需要转换
Sine12bit[i]= ((float)sin(jiaodu)*(MAX-MID)+MID)*1241.212; //1241.212是比例,等于4096/3.3
}
}
/*************************************************************
Function : Set_Period
Description : 设置频率hz
Input : value(需要设置的频率hz值)
return : none
*************************************************************/
void Set_Period(u32 value)
{
TIM_ARRPreloadConfig(TIM2,DISABLE);
TIM2->ARR=HZ(value); //更新预装载值
TIM_ARRPreloadConfig(TIM2,ENABLE);
}
/*************************************************************
Function : TIM2_Int_Init
Description: 初始化定时器2
Input : Hz (需要初始化的频率hz值)
return : none
*************************************************************/
void TIM2_Int_Init(u32 Hz)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);//初始化定时器2与6的时钟
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = HZ(Hz); //正弦波频率设置
TIM_TimeBaseStructure.TIM_Prescaler = 0x0; //没有预分频
TIM_TimeBaseStructure.TIM_ClockDivision = 0x0; //时钟不分频 72M
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //增计数
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_SelectOutputTrigger(TIM2, TIM_TRGOSource_Update);//更新TIM2输出触发
}
/*************************************************************
Function : DAC_DMA_Config
Description: 初始化DAC和DMA
Input : none
return : none
*************************************************************/
void DAC_DMA_Config(void)
{
DAC_InitTypeDef DAC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB1PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);//初始化DAC的时钟
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE);//初始化DMA2的时钟
/*初始化GPIO*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 ;//DAC channel1和channel2对应的引脚
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/*初始化DAC寄存器*/
DAC_StructInit(&DAC_InitStructure);
DAC_InitStructure.DAC_Trigger = DAC_Trigger_T2_TRGO;//指定DAC1的触发定时器TIM2
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;//无波形产生
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; //不是能DAC输出缓冲
DAC_Init(DAC_Channel_1, &DAC_InitStructure);//初始化DAC channel1
DAC_Cmd(DAC_Channel_1, ENABLE); //使能DAC channel1
DAC_DMACmd(DAC_Channel_1, ENABLE); //使能DAC Channel1的DMA
/*初始化DMA寄存器*/
DMA_DeInit(DMA2_Channel3); //将DMA配置成默认值
DMA_InitStructure.DMA_PeripheralBaseAddr = DAC_DHR12R1;//指定DMA2通道3的目标地址为DAC1_DHR12R1
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&Sine12bit;//指定DMA的源地址为数组Sine12bit
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;//外设作为数据传输的目的地
DMA_InitStructure.DMA_BufferSize = sizeof(Sine12bit)/;//DMA缓冲区大小
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设机地址存器不变
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址寄存器递增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;//外设数据宽度为半字
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;//内存数据宽度为半字
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;//工作在循环缓存模式,数据传输数为0时,自动恢复配置初值
DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;//非常高优先级
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;//通道未被设置成内存到内存模式,与循环模式相对
DMA_Init(DMA2_Channel3, &DMA_InitStructure);//初始化DMA
DMA_Cmd(DMA2_Channel3, ENABLE); //使能DMA的channel3
TIM_Cmd(TIM2, ENABLE); //最后开启TIM2转换
}
然后在main()函数里,调用USART_handler()
其中USART_handler()函数实现如下:
void USART_handler()
{
u8 len;
u32 hz; //获取HZ频率
float dac_max,dac_min; //获取DAC峰值 if(USART_RX_STA&0x8000)
{
len=USART_RX_STA&0x2F;
USART_RX_BUF[len]=;
sscanf((char *)USART_RX_BUF,"%d,%f,%f",&hz,&dac_max,&dac_min);
printf("SET HZ = %d, MAX = %f,MIN = %f\r\n", hz,dac_max,dac_min); Set_Sine12bit(dac_max,dac_min); //更改峰值
Set_Period( hz); //更改频率 USART_RX_STA=;
}
}
3.进入串口试验
1)设置频率=50hz,正峰值=3.3V,负峰值=0V,串口则发送50,3.3,0.0,如下图所示:

示波器测量:

2)设置频率=100hz,正峰值=3V,负峰值=0V, 串口则发送100,3,0.0:

3)设置频率=100hz,正峰值=2V,负峰值=1V, 串口则发送100,2,1:

4)设置频率=1khz,正峰值=3.3V,负峰值=0V, 串口则发送1000,3.3,0:

5)设置频率=20khz,正峰值=3.3V,负峰值=0V,串口则发送20000,3.3,0:

是不是很简单~
STM32-正弦波可调(50HZ~20KHZ可调、峰峰值0~3.3V可调)的更多相关文章
- Cloudera Hadoop 5& Hadoop高阶管理及调优课程(CDH5,Hadoop2.0,HA,安全,管理,调优)
1.课程环境 本课程涉及的技术产品及相关版本: 技术 版本 Linux CentOS 6.5 Java 1.7 Hadoop2.0 2.6.0 Hadoop1.0 1.2.1 Zookeeper 3. ...
- [Spark性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析
本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...
- spark 性能调优(一) 性能调优的本质、spark资源使用原理、调优要点分析
转载:http://www.cnblogs.com/jcchoiling/p/6440709.html 一.大数据性能调优的本质 编程的时候发现一个惊人的规律,软件是不存在的!所有编程高手级别的人无论 ...
- elasticsearch5.3.0 bulk index 性能调优实践
elasticsearch5.3.0 bulk index 性能调优实践 通俗易懂
- JVM的常用的调优策略和垃圾回收算法及Tomcat的常用调优参数
jvm调优主要针对堆内存,堆内存分为:新生区.养老区和永久区 永久区存放的是系统jdk自身的interface和class的元数据,所以唯有新生区和养老区具有优化空间. 新生区:伊甸区和幸存者区.所有 ...
- Nginx-PHP优化设置 + lnmp调优的关键影响因素 + php-fpm + nginx返回码 + tcp调优 + 最大文件描述符
https://www.cnblogs.com/zengkefu/p/5602473.html最大文件描述符 https://blog.csdn.net/fanren224/article/detai ...
- 性能调优的本质、Spark资源使用原理和调优要点分析
本课主题 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...
- JVM性能调优监控工具专题一:JVM自带性能调优工具(jps,jstack,jmap,jhat,jstat,hprof)
性能分析工具jstatjmapjhatjstack 前提概要: JDK本身提供了很多方便的JVM性能调优监控工具,除了集成式的VisualVM和jConsole外,还有jps.jsta ...
- JVM性能调优(3) —— 内存分配和垃圾回收调优
前序文章: JVM性能调优(1) -- JVM内存模型和类加载运行机制 JVM性能调优(2) -- 垃圾回收器和回收策略 一.内存调优的目标 新生代的垃圾回收是比较简单的,Eden区满了无法分配新对象 ...
随机推荐
- 谷歌、腾讯、百度相应API批量获取地理位置坐标信息及其优缺点
目录: 申请ak 批量获取地理位置 目的:通过给定的地理位置名称(如:北京市海淀区上地十街十号),获取经纬度信息. 1.申请ak 以百度Geocoding API为例:http://lbsyun.ba ...
- ReentrantLock 与 AQS 源码分析
ReentrantLock 与 AQS 源码分析 1. 基本结构 重入锁 ReetrantLock,JDK 1.5新增的类,作用与synchronized关键字相当,但比synchronized ...
- web服务器学习2---httpd-2.4.29虚拟目录及访问控制
一 创建虚拟目录 环境准备: 系统:CentOS 7.4 软件:httpd-2.4.29 1.编辑主配置文件,添加命令运行子配置文件 vi /usr/local/httpd/conf/httpd.co ...
- Java HashMap工作原理及实现
Java HashMap工作原理及实现 2016/03/20 | 分类: 基础技术 | 0 条评论 | 标签: HASHMAP 分享到:3 原文出处: Yikun 1. 概述 从本文你可以学习到: 什 ...
- php抽象类和接口的区别
php抽象类和接口的区别 tags:抽象类 接口 抽象类和接口 php 引言:这是一个面试经常被问到的问题,也是一个经典问题.我们尽量引用官方权威的说明或者经过实验来证明本文所说的内容准确性. 抽象类 ...
- Django-rest-framework源码分析----认证
一.前言 1.1.安装 两种方式: github pip直接安装 pip install django-rest-framework 1.2.需要先了解的一些知识 理解下面两个知识点非常重要,djan ...
- php函数var_dump() 、print_r()、echo()
var_dump() 能打印出类型 print_r() 只能打出值 echo() 是正常输出... 需要精确调试的时候用 var_dump(); 一般查看的时候用 print_r() 另外 , ech ...
- 格式化输出io:format的奇技淫巧
格式化输出io:format是我接触Erlang使用的第一个库函数(io:format("Hello World")),随着学习的深入,它也是我debug优先选择最简单直接的工具. ...
- Python 黑客相关电子资源和书籍推荐
原创 2017-06-03 玄魂工作室 玄魂工作室 继续上一次的Python编程入门的资源推荐,本次为大家推荐的是Python网络安全相关的资源和书籍. 在去年的双11送书的时候,其实送过几本Pyth ...
- 基于 Java NIO 实现简单的 HTTP 服务器
1.简介 本文是上一篇文章实践篇,在上一篇文章中,我分析了选择器 Selector 的原理.本篇文章,我们来说说 Selector 的应用,如标题所示,这里我基于 Java NIO 实现了一个简单的 ...