SPOJ Query on a tree V
You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are numbered from 1 to N. We define dist(a, b) as the number of edges on the path from node a to node b.
Each node has a color, white or black. All the nodes are black initially.
we will ask you to perfrom some instructions of the following form:
0 i : change the color of i-th node(from black to white, or from white to black).
1 v : ask for the minimum dist(u, v), node u must be white(u can be equal to v). Obviously, as long as node v is white, the result will always be 0.
Input
In the first line there is an integer N (N <= 100000)
In the next N-1 lines, the i-th line describes the i-th edge: a line with two integers a b denotes an edge between a and b.
In the next line, there is an integer Q denotes the number of instructions (Q <= 100000)
In the next Q lines, each line contains an instruction "0 i" or "1 v"
Output
For each "1 v" operation, print one integer representing its result. If there is no white node in the tree, you should write "-1".
Example
解题报告:
写了这个题之后算是对点分治有了个新认识,感觉以前写的都是假的啊.
突然发现任意两个点之间的路径仿佛都只会交在一个重心上,这样我们就很好弄了,对每一个重心维护一个小根堆,如果0操作弄出一个白点,我们就把这个白点加入到包含它的重心所在的堆里面,然后询问就直接查询包含该点的重心,用\(disi,v+q[i].top()\)去更新答案,i为某重心,q为该重心的堆,复杂度\(O(nlog2n)\)
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <queue>
#include <vector>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=100005,inf=2e8;
int gi(){
int str=0;char ch=getchar();
while(ch>'9' || ch<'0')ch=getchar();
while(ch>='0' && ch<='9')str=(str<<1)+(str<<3)+ch-48,ch=getchar();
return str;
}
int n,num=0,head[N],to[N<<1],nxt[N<<1],root=0,f[N]={inf},son[N],sum;
bool vis[N];
struct node{
int x,id;
bool operator <(const node &pp)const{
return x>pp.x;
}
};
priority_queue<node>q[N];
void link(int x,int y){
nxt[++num]=head[x];to[num]=y;head[x]=num;
}
int Head[N],NUM=0,To[N*30],Dis[N*30],Next[N*30];
void add(int x,int y,int z){
Next[++NUM]=Head[x];To[NUM]=y;Dis[NUM]=z;Head[x]=NUM;
}
bool col[N];
void getdis(int x,int last,int dist){
add(x,root,dist);
int u;
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(u==last || vis[u])continue;
getdis(u,x,dist+1);
}
}
void getroot(int x,int last){
int u;son[x]=1;f[x]=0;
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(vis[u] || u==last)continue;
getroot(u,x);
son[x]+=son[u];
f[x]=Max(f[x],son[u]);
}
f[x]=Max(f[x],sum-son[x]);
if(f[x]<f[root])root=x;
}
void dfs(int x){
int u;vis[x]=true;
getdis(x,x,0);
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(vis[u])continue;
root=0;sum=son[u];getroot(u,x);
dfs(root);
}
}
void updata(int x){
col[x]^=1;
if(col[x])
for(int i=Head[x];i;i=Next[i])
q[To[i]].push((node){Dis[i],x});
}
int query(int x){
if(col[x])return 0;
int ret=inf;
for(int i=Head[x];i;i=Next[i]){
int u=To[i];
while(!q[u].empty() && !col[q[u].top().id])q[u].pop();
if(!q[u].empty())ret=Min(ret,q[u].top().x+Dis[i]);
}
return ret==inf?-1:ret;
}
void work()
{
int x,y;
n=gi();
for(int i=1;i<n;i++){
x=gi();y=gi();
link(x,y);link(y,x);
}
sum=n;root=0;getroot(1,1);
dfs(root);
int Q=gi(),flag;
while(Q--){
flag=gi();x=gi();
if(!flag)updata(x);
else printf("%d\n",query(x));
}
}
int main()
{
work();
return 0;
}
SPOJ Query on a tree V的更多相关文章
- 2019.02.17 spoj Query on a tree V(链分治)
传送门 题意简述: 给你一棵nnn个黑白点的树,初始全是黑点. 现在支持给一个点换颜色或者求整颗树中离某个点最近的白点跟这个点的距离. 思路: 考虑链分治维护答案,每个链顶用一个堆来维护答案,然后对于 ...
- QTREE5 - Query on a tree V——LCT
QTREE5 - Query on a tree V 动态点分治和动态边分治用Qtree4的做法即可. LCT: 换根后,求子树最浅的白点深度. 但是也可以不换根.类似平常换根的往上g,往下f的拼凑 ...
- SPOJ QTREE Query on a tree V
You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are number ...
- SPOJ QTREE Query on a tree V ——动态点分治
[题目分析] QTREE4的弱化版本 建立出分治树,每个节点的堆表示到改点的最近白点距离. 然后分治树上一直向上,取min即可. 正确性显然,不用担心出现在同一子树的情况(不会是最优解),请自行脑补. ...
- SPOJ - QTREE5 Query on a tree V 边分治
题目传送门 题意:给你一棵树, 然后树上的点都有颜色,且原来为黑,现在有2个操作,1 改变某个点的颜色, 2 询问树上的白点到u点的最短距离是多少. 题解: 这里用的还是边分治的方法. 把所有东西都抠 ...
- SPOJ Query on a tree 树链剖分 水题
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...
- Spoj Query on a tree III
题目描述 给出N个点的一棵树(N-1条边),节点有白有黑,初始全为白 有两种操作: 0 i : 改变某点的颜色(原来是黑的变白,原来是白的变黑) 1 v : 询问1到v的路径上的第一个黑点,若无,输出 ...
- SPOJ Query on a tree III (树剖(dfs序)+主席树 || Splay等平衡树)(询问点)
You are given a node-labeled rooted tree with n nodes. Define the query (x, k): Find the node whose ...
- SPOJ QTREE4 SPOJ Query on a tree IV
You are given a tree (an acyclic undirected connected graph) with N nodes, and nodes numbered 1,2,3. ...
随机推荐
- 小草手把手教你 LabVIEW 串口仪器控制——VISA 串口配置
建议大家按我发帖子的顺序来看,方便大家理解.请不要跳跃式的阅读.很多人现在看书,都跳跃式的看,选择性的看,导致有些细节的部分没有掌握到,然后又因为某个细节耽误很多时间.以上只是个人建议,高手可以略过本 ...
- 关于java中的数组
前言:最近刚刚看完了<Java编程思想>中关于数组的一章,所有关于Java数组的知识,应该算是了解的差不多了.在此再梳理一遍,以便以后遇到模糊的知识,方便查阅. Java中持有对象的方式, ...
- 洛谷P2894 [USACO08FEB]酒店Hotel
P2894 [USACO08FEB]酒店Hotel https://www.luogu.org/problem/show?pid=2894 题目描述 The cows are journeying n ...
- python 面向对象设计思想发展史
这篇主要说的是程序设计思想发展历史,分为概述和详细发展历史 一,概述 1940年以前:面向机器 最早的程序设计都是采用机器语言来编写的,直接使用二进制码来表示机器能够识别和执行的 指令和数 据.简单来 ...
- 微信号的openid的深入理解
header('Location:https://open.weixin.qq.com/connect/oauth2/authorize?appid='.$this->appid.'&r ...
- python全栈开发-logging模块(日记专用)
一.概述 很多程序都有记录日志的需求,并且日志中包含的信息即有正常的程序访问日志,还可能有错误.警告等信息输出,python的logging模块提供了标准的日志接口,你可以通过它存储各种格式的日志,l ...
- Spring中报"Could not resolve placeholder"的解决方案
除去properites文件路径错误.拼写错误外,出现"Could not resolve placeholder"很有可能是使用了多个PropertyPlaceholderCon ...
- apigw鉴权分析(1-5)亚马逊 - 鉴权分析
一.访问入口 https://developer.amazon.com/public/zh 二.鉴权方式分析 三.分解结论
- 文本编辑器(KindEditord)
1.下载 官网下载:http://kindeditor.net/down.php 本地下载:http://files.cnblogs.com/files/wupeiqi/kindeditor_a5.z ...
- Windows10下的docker安装与入门 (二)使用docker引擎在容器中运行镜像
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...