You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are numbered from 1 to N. We define dist(a, b) as the number of edges on the path from node a to node b.

Each node has a color, white or black. All the nodes are black initially.

we will ask you to perfrom some instructions of the following form:

0 i : change the color of i-th node(from black to white, or from white to black).

1 v : ask for the minimum dist(u, v), node u must be white(u can be equal to v). Obviously, as long as node v is white, the result will always be 0.

Input

In the first line there is an integer N (N <= 100000)

In the next N-1 lines, the i-th line describes the i-th edge: a line with two integers a b denotes an edge between a and b.

In the next line, there is an integer Q denotes the number of instructions (Q <= 100000)

In the next Q lines, each line contains an instruction "0 i" or "1 v"

Output

For each "1 v" operation, print one integer representing its result. If there is no white node in the tree, you should write "-1".

Example

解题报告:

写了这个题之后算是对点分治有了个新认识,感觉以前写的都是假的啊.

突然发现任意两个点之间的路径仿佛都只会交在一个重心上,这样我们就很好弄了,对每一个重心维护一个小根堆,如果0操作弄出一个白点,我们就把这个白点加入到包含它的重心所在的堆里面,然后询问就直接查询包含该点的重心,用\(disi,v+q[i].top()\)去更新答案,i为某重心,q为该重心的堆,复杂度\(O(nlog2n)\)

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <queue>
#include <vector>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=100005,inf=2e8;
int gi(){
int str=0;char ch=getchar();
while(ch>'9' || ch<'0')ch=getchar();
while(ch>='0' && ch<='9')str=(str<<1)+(str<<3)+ch-48,ch=getchar();
return str;
}
int n,num=0,head[N],to[N<<1],nxt[N<<1],root=0,f[N]={inf},son[N],sum;
bool vis[N];
struct node{
int x,id;
bool operator <(const node &pp)const{
return x>pp.x;
}
};
priority_queue<node>q[N];
void link(int x,int y){
nxt[++num]=head[x];to[num]=y;head[x]=num;
}
int Head[N],NUM=0,To[N*30],Dis[N*30],Next[N*30];
void add(int x,int y,int z){
Next[++NUM]=Head[x];To[NUM]=y;Dis[NUM]=z;Head[x]=NUM;
}
bool col[N];
void getdis(int x,int last,int dist){
add(x,root,dist);
int u;
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(u==last || vis[u])continue;
getdis(u,x,dist+1);
}
}
void getroot(int x,int last){
int u;son[x]=1;f[x]=0;
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(vis[u] || u==last)continue;
getroot(u,x);
son[x]+=son[u];
f[x]=Max(f[x],son[u]);
}
f[x]=Max(f[x],sum-son[x]);
if(f[x]<f[root])root=x;
}
void dfs(int x){
int u;vis[x]=true;
getdis(x,x,0);
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(vis[u])continue;
root=0;sum=son[u];getroot(u,x);
dfs(root);
}
}
void updata(int x){
col[x]^=1;
if(col[x])
for(int i=Head[x];i;i=Next[i])
q[To[i]].push((node){Dis[i],x});
}
int query(int x){
if(col[x])return 0;
int ret=inf;
for(int i=Head[x];i;i=Next[i]){
int u=To[i];
while(!q[u].empty() && !col[q[u].top().id])q[u].pop();
if(!q[u].empty())ret=Min(ret,q[u].top().x+Dis[i]);
}
return ret==inf?-1:ret;
}
void work()
{
int x,y;
n=gi();
for(int i=1;i<n;i++){
x=gi();y=gi();
link(x,y);link(y,x);
}
sum=n;root=0;getroot(1,1);
dfs(root);
int Q=gi(),flag;
while(Q--){
flag=gi();x=gi();
if(!flag)updata(x);
else printf("%d\n",query(x));
}
} int main()
{
work();
return 0;
}

SPOJ Query on a tree V的更多相关文章

  1. 2019.02.17 spoj Query on a tree V(链分治)

    传送门 题意简述: 给你一棵nnn个黑白点的树,初始全是黑点. 现在支持给一个点换颜色或者求整颗树中离某个点最近的白点跟这个点的距离. 思路: 考虑链分治维护答案,每个链顶用一个堆来维护答案,然后对于 ...

  2. QTREE5 - Query on a tree V——LCT

    QTREE5 - Query on a tree V 动态点分治和动态边分治用Qtree4的做法即可. LCT: 换根后,求子树最浅的白点深度. 但是也可以不换根.类似平常换根的往上g,往下f的拼凑 ...

  3. SPOJ QTREE Query on a tree V

    You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are number ...

  4. SPOJ QTREE Query on a tree V ——动态点分治

    [题目分析] QTREE4的弱化版本 建立出分治树,每个节点的堆表示到改点的最近白点距离. 然后分治树上一直向上,取min即可. 正确性显然,不用担心出现在同一子树的情况(不会是最优解),请自行脑补. ...

  5. SPOJ - QTREE5 Query on a tree V 边分治

    题目传送门 题意:给你一棵树, 然后树上的点都有颜色,且原来为黑,现在有2个操作,1 改变某个点的颜色, 2 询问树上的白点到u点的最短距离是多少. 题解: 这里用的还是边分治的方法. 把所有东西都抠 ...

  6. SPOJ Query on a tree 树链剖分 水题

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

  7. Spoj Query on a tree III

    题目描述 给出N个点的一棵树(N-1条边),节点有白有黑,初始全为白 有两种操作: 0 i : 改变某点的颜色(原来是黑的变白,原来是白的变黑) 1 v : 询问1到v的路径上的第一个黑点,若无,输出 ...

  8. SPOJ Query on a tree III (树剖(dfs序)+主席树 || Splay等平衡树)(询问点)

    You are given a node-labeled rooted tree with n nodes. Define the query (x, k): Find the node whose ...

  9. SPOJ QTREE4 SPOJ Query on a tree IV

    You are given a tree (an acyclic undirected connected graph) with N nodes, and nodes numbered 1,2,3. ...

随机推荐

  1. Django 测试驱动开发

    第一章 1.编写functional_tests.py from selenium import webdriver browser = webdriver.Firefox() browser.get ...

  2. SpringMVC之HandlerMapping的使用

    上篇博客在了解SpringMVC的工作流程时留了一些疑问,今天先学习下HandlerMapping,在HandlerMapping中可以通过HandlerExecutionChain getHandl ...

  3. CSS揭秘(三)形状

    Chapter 3 1. 椭圆 椭圆的实现主要依靠 border-radius 属性,该属性确定边框切圆角的半径大小,可以指定数值 px,也可以使用百分比显示 而且该属性非常灵活,四个角可以分别设置 ...

  4. pymysql安装和使用

    一.pymysql安装 安装mymysql前请确认python环境已经准备好,在之前的博文http://www.cnblogs.com/newzol/p/8682176.html有说明pythonwe ...

  5. 基于dns搭建eureka集群

    eureka集群方案: 1.通常我们部署的eureka节点多于两个,根据实际需求,只需要将相邻节点进行相互注册(eureka节点形成环状),就达到了高可用性集群,任何一个eureka节点挂掉不会受到影 ...

  6. spring-oauth-server实践:客户端和服务端环境搭建

    客户端:http://localhost:8080/spring-oauth-client/index.jsp 服务端:http://localhost:8080/spring-oauth-serve ...

  7. uestc 1703一道更简单的字符串题目

    https://vjudge.net/problem/UESTC-1703 题意:略 思路: 枚举+字符串hash. ans从1到len开始枚举字符串的长度,然后就依次比较各段长度为ans的字符串的h ...

  8. 学习react系列(八)—— mixins迁移

    先来介绍一下mixins(混入) 先来看一段代码: const mixin = function(obj, mixins) { const newObj = obj; newObj.prototype ...

  9. [C#].Net Core 获取 HttpContext.Current 以及 AsyncLocal 与 ThreadLocal

    在 DotNetCore 当中不再像 MVC5 那样可以通过 HttpContext.Current 来获取到当前请求的上下文. 不过微软提供了一个 IHttpContextAccessor 来让我们 ...

  10. leetcode 561.Array Partition I-easy

    Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1 ...