·题目:

        西施与范蠡泛舟而去……不对,场景不对,咳咳。在甄嬛前往蓬莱洲之前,她与皇上在碧桐书院告别。为了这可能会长达数月的离别,两个人都似乎有很多话要对对方说,却都无语凝噎。这时,皇上突然发话:“嬛嬛啊(桓桓?),既然你我都说不出话来,那这时间也不好打发,我们来数三角形吧。”为了满足皇上突发而来的童趣,甄嬛欣然陪同了。可这……纸上是一张n*m的格子方阵,即有(n+1)*(m+1)个格点。每个格子都是边长为1的正方形。而他们要数的,则是任取3个格点作为三角形的顶点所形成的直角三角形且该三角形面积为s/2的个数。甄嬛数的头都晕了,她现在只想知道满足条件的三角形个数 mod 1000000007。

输入格式:第一行3个正整数n,m,s, 意义如题
输出格式:仅一个整数,为甄嬛与满足条件的三角形个数 mod (10^9+7)
样例输入:1 1 1
样例输出:4
数据范围:
对于10%的数据:n<=10
对于另外40%的数据:s为质数
对于100%的数据:1<=n,m,s<=108
时间限制: 1S
空间限制: 128M

·题目混乱,述大意:

     给定长度为n*m的相同正方形方格组成的棋盘,求出使用格点组成的三角形个数,答案取模1000000007。(n,m<=108)。

·分析:

      在草稿纸上画图时容易发现一些普遍规律和特例,此时大米饼认为应该先里找出总体的方法,再进行特例的处理(如去重),这样很美妙。一个非常简单的思路是,设这个三角形的边长为a,b,那么在棋盘上就有如下摆法:

    

     同时要算上棋盘旋转90o后的情况,不要忘记一个三角形可以在同一个长方形里有四种摆法,所以对于这个形状的三角形的个数P可以表示为:

     P=(n-a+1)*(m-b+1)*4+(n-b+1)*(m-a+1)*4

     读题一会儿后意识到一个问题是三角形的边可以是斜着的。上文的天真方法连正确答案都无法得出:

     在经历初中数学洗礼的我们开始回想起中考时的一些琐碎,发现好像很多几何题都是这样子的——有关相似直角三角形。清晰地发现,这些三角形的直角边无非是由两个相似的直角三角形的斜边组成:

     依照这个思路,做一些便于代码书写的分析。首先使用a,b表示出橙色三角形的面积S=(a2+b2)*k[注意,k不一定偏要为整数,想一想,不为什么]。我们看一看数据范围:n,m<=100000000,开方后为10000,说明最坏情况循环下循环次数:108。不过,这里我们需要保证a,b,ak,bk均为整数,也就是分解数——“与分解有关的时间复杂度稳定性很差”,我们可以直接暴力枚举a,b,找到所有满足面积公式条件的二元组(a,b),并由此可以推出对应的k值。

     与此同时,一个更加振奋人心的消息——上文那种边与格子平行的情况可以看做(a,b)其中一个为0的情况,所以我们争取一起处理。

     这样看来,似乎只需要进行一个二重循环枚举a,b然后使用类似于上文的天真方法计算答案就可以了。在激动之余,你发现还有一些特殊情况。

     为了有序性和避免重复,我们规定枚举二元组(a,b)必须满足k的值大于等于1。我们先列出一般情况的答案计算方法。对于一组(a,b)构成面积为S的三角形的个数P计算方法:
    

    对于这个三角形,我们只需要求出其所在的最小矩形的长宽就可以了。由于a,b的大小关系不确定。所以:

     宽长度为:max(a,bk),长长度为:b+ak

   我们设长宽分别为p,q,那么S的个数为:

     P=(n-p+1)*(m-q+1)*4+(n-p+1)*(m-q+1)*4

    最后我们着眼于两种特殊情况的处理:

   [1] k==1:

      由于a,b大小不定,所以如果(a,b)满足,那么(b,a)也是合法的,此时相当于计算了8次,但是我们发现,由于k值为1,所以相似三角形为等腰,重复计算了,所以处理方式是除以二。

   [2] a==0||b==0:

     这表明是一个直角边和格子边平行的直角三角形。设u>0,如果二元组(u,0)合法,那么(0,u)同样合法,但是!(u,0),(0,u)形成的三角形形状完全相同,而(u,v),(v,u)[v>0]形成的三角形形状是相同或者不同,但是相同的情况被[1]的处理方式而排除,可是(u,0)(0,u)的重复计算没有排除。随意处理方式也是除以二。

     考试结束后其实很多STD的写法是将(a,b)中是否有0进行分开计算,这样更容易理解。但是追求更深刻理解和短码的大米饼毫不犹豫地视作一种情况讨论。代码来啦:

 #include<stdio.h>
#include<algorithm>
#define ll long long
#define M 1000000007
#define go(i,a,b) for(ll i=a;i<=b;i++)
using namespace std;
ll n,m,s,t,res,ans,A,B,T,X,Y;
ll Cal(ll a,ll b){return max(1ll*,n-a+)*max(1ll*,m-b+)%M;}
int main()
{
scanf("%lld%lld%lld",&n,&m,&s);
go(a,,M){if(a*a>s)break;
go(b,a?:,M){if((res=a*a+b*b)>s)break;
if(1ll*a*s%res||1ll*b*s%res)continue;
A=a*s/res,B=b*s/res;T=res==s?:;
if(a==||b==)T/=;X=b+A;Y=max(a,B);
(ans+=T*Cal(X,Y)+T*Cal(Y,X))%=M;
}}printf("%lld",(ans%M+M)%M);return ;
}//Paul_Guderian

如果青春是一捧鲜花,我愿把它洒给你,

如果生命是一场燃烧的旧梦,

我愿在梦醒前燃烬……   ————汪峰《忧郁的眼睛》

【无语凝噎(wordless)】的更多相关文章

  1. 【转】关于phpcms的学习

    在实现PHPCMS网站过程中,根据业务需求,我们遇到很多问题,特此总结如下,以便大家参考学习. [1]PHPCMS V9系统目录简析 在研究所有问题之前,请先了解一下系统的文件目录结构,具体如下图所示 ...

  2. PHPCMS V9 学习总结

    在实现PHPCMS网站过程中,根据业务需求,我们遇到很多问题,特此总结如下,以便大家参考学习. [1]PHPCMS V9系统目录简析 在研究所有问题之前,请先了解一下系统的文件目录结构,具体如下图所示 ...

  3. 微信JSSDK与录音相关的坑

    欢迎各位转载, 以让微信团队重视这些恼人的BUG. 请注明出处微信JSSDK与录音相关的坑 by lzl124631x 最近一直在做微信JSSDK与录音相关的功能开发, 遇到了各种奇尺大坑, 时不时冷 ...

  4. PHPCMS V9 学习总结(转)

    转自:http://www.cnblogs.com/Braveliu/p/5074930.html 在实现PHPCMS网站过程中,根据业务需求,我们遇到很多问题,特此总结如下,以便大家参考学习. [1 ...

  5. phpcms图文总结(转)

    转自:http://www.cnblogs.com/Braveliu/p/5074930.html 在实现PHPCMS网站过程中,根据业务需求,我们遇到很多问题,特此总结如下,以便大家参考学习. [1 ...

  6. 微信JSSDK与录音相关的坑

    微信JSSDK与录音相关的坑 最近一直在做微信JSSDK与录音相关的功能开发, 遇到了各种奇尺大坑, 时不时冷不丁地被坑一道, 让我时常想嘶吼: "微信JSSDK就是个大腊鸡!!!!!!!! ...

  7. 模仿某旅行网站 纯css实现背景放大效果

    基本功能是鼠标移动到图片上,对应宽度变宽.其中布局和基本样式直接copy官网,功能部分是自己瞎鼓捣实现的. 直接上代码: HTML部分 <div class="fold_wrap&qu ...

  8. Python-GUI编程-PyQt5

    Python-GUI编程-PyQt5 1. GUI编程是什么? GUI 全称为: Graphical User Interface;简称GUI翻译为中文为: 图形化用户接口简单理解就是:- 使用Pyt ...

  9. #学习笔记#e2e学习使用(一)

    本文仅限于记录本人学习的过程,以及怎么踩的坑,是如何解决的.逻辑肯定是混乱的,有用之处会抽出共通另行发帖. 最终目标:要运用于Vue项目中,进行功能测试甚至自动化测试. 一.e2e概念 理解:end ...

随机推荐

  1. 理解Python迭代对象、迭代器、生成器

    作者:zhijun liu链接:https://zhuanlan.zhihu.com/p/24376869来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 本文源自RQ作 ...

  2. 支付宝sdk集成,报系统繁忙 请稍后再试(ALI64)

    移动快捷支付,往往需要集成支付宝的sdk,集成的过程相对简单,只要按照支付宝的文档,进行操作一般不会出问题.            下面主要说明一下,集成sdk后报"系统繁忙 请稍后再试(A ...

  3. Hibernate之深入Hibernate的配置文件

    1.创建Configuration类的对象 Configuration类的对象代表了应用程序到SQL数据库的映射配置.Configuration类的实例对象,提供一个buildSessionFacto ...

  4. RocketMQ(二):RPC通讯

    匠心零度 转载请注明原创出处,谢谢! RocketMQ网络部署图 NameServer:在系统中是做命名服务,更新和发现 broker服务. Broker-Master:broker 消息主机服务器. ...

  5. python 判断变量是否是 None 的三种写法

    代码中经常会有变量是否为None的判断,有三种主要的写法:第一种是`if x is None`:第二种是 `if not x:`:第三种是`if not x is None`(这句这样理解更清晰`if ...

  6. kubernetes入门(06)kubernetes的核心概念(3)

    一.API 对象 API对象是K8s集群中的管理操作单元.K8s集群系统每支持一项新功能,引入一项新技术,一定会新引入对应的API对象,支持对该功能的管理操作.例如副本集Replica Set对应的A ...

  7. angular2 学习笔记 ( unit test 单元测试 )

    第一次写单元测试. 以前一直都有听说 TDD 的事情. 今天总算是去尝试了一下. 先说说 TDD 的想法, 是这样的, 开发项目的流程 : 确定需求 -> 写类,接口,方法的名字(不写具体实现代 ...

  8. redis入门(03)redis的配置

    一.配置文件 Redis 的配置文件位于 Redis 安装目录下,文件名为 redis.conf.你可以通过 CONFIG 命令查看或设置配置项. 二.查看修改 1.查看配置 1.1.vi redis ...

  9. 前端学习之jquery/下

    前端学习之jquery 一 属性操作 html(): console.log($("div").html()); $(".test").html("& ...

  10. priority queue优先队列初次使用

    题目,排队打印问题 Input Format One line with a positive integer: the number of test cases (at most 20). Then ...